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Fig. 1. Our method is able to automatically generate diverse high-quality hairstyles from random latent vectors.

Despite recent successes in hair acquisition that fits a high-dimensional

hair model to a specific input subject, generative hair models, which estab-

lish general embedding spaces for encoding, editing, and sampling diverse

hairstyles, are way less explored. In this paper, we presentGroomGen, the first
generative model designed for hair geometry composed of highly-detailed

dense strands. Our approach is motivated by two key ideas. First, we con-

struct hair latent spaces covering both individual strands and hairstyles. The

latent spaces are compact, expressive, and well-constrained for high-quality

and diverse sampling. Second, we adopt a hierarchical hair representation
that parameterizes a complete hair model to three levels: single strands,

sparse guide hairs, and complete dense hairs. This representation is critical

to the compactness of latent spaces, the robustness of training, and the

efficiency of inference. Based on this hierarchical latent representation,

our proposed pipeline consists of a strand-VAE and a hairstyle-VAE that

encode an individual strand and a set of guide hairs to their respective latent

spaces, and a hybrid densification step that populates sparse guide hairs to

a dense hair model. GroomGen not only enables novel hairstyle sampling
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and plausible hairstyle interpolation, but also supports interactive editing

of complex hairstyles, or can serve as strong data-driven prior for hairstyle

reconstruction from images. We demonstrate the superiority of our approach

with qualitative examples of diverse sampled hairstyles and quantitative

evaluation of generation quality regarding every single component and the

entire pipeline.

CCS Concepts: • Computing methodologies→ Parametric curve and
surface models.

Additional Key Words and Phrases: Strand-level hair modeling, hairstyle

generation

ACM Reference Format:
Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo

Beeler. 2023. GroomGen: A High-Quality Generative Hair Model Using

Hierarchical Latent Representations. ACM Trans. Graph. 42, 6, Article 267
(December 2023), 16 pages. https://doi.org/10.1145/3618309

1 INTRODUCTION
Hair substantially contributes to a person’s appearance, and we

frequently change it to express ourselves. As such it plays a critical

role in depicting not just our physical appearance but also reflecting

our individuality, mood, and cultural belonging. Hair digitization

and modeling have recently garnered much attention, highlight-

ing the exciting potential of creating high-quality hairstyles that

contribute significantly to the perceived realism of virtual human

avatars. However, unlike any other parts of ourselves, such as faces,
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bodies, or hands, hair geometry is highly intricate and unstructured,

making it exceptionally challenging to represent or model.

Empirically, the complexity of hair arises from two main levels.

Locally, each individual strand corresponds to a 1D curve embedded

in 3D space, originating from the scalp, defined by intrinsic proper-

ties that give rise to diverse curliness or waviness, and modulated

by external conditions such as gravity. Globally, comprising hun-

dreds of thousands of hair strands, the overall hairstyle exhibits a

high-level structure that combines coherency among neighboring

strands with independent variations on a per-strand basis. Given the

intricate nature of hair, much of the existing research focuses on hair

acquisition, which often involves overfitting high-dimensional hair

representations, typically Euclidean positions of densely sampled

vertices, to various types of inputs (multi-view images [Beeler et al.

2012; Luo et al. 2012; Nam et al. 2019;Winberg et al. 2022; Zhang et al.

2017], single photos [Chai et al. 2016; Hu et al. 2015], or specialized

sensors [Herrera et al. 2012]). While high-fidelity reconstruction

for specific subjects is achieved, without proper parameterization

that embeds the different hair within a shared compact space, their

outputs lack the generalization capability necessary to support

interpolation, manipulation, or novel hairstyle synthesis.

On the other hand, generative hair models, the main focus of

this work, remain relatively unexplored. The pioneering work on

hair geometry synthesis [Wang et al. 2009] proposes a 2D hair

embedding that can generate new hairstyles from given exemplars

through texture synthesis. However, due to the inherent limitations

of explicit strand geometry encoding and homogeneous texture

synthesis, this approach can only handle short to medium-length

hair with uniform styles. More recently, Volumetric Hair VAE [Saito

et al. 2018] demonstrates the potential of generating novel hairstyles

by interpolating existing ones in a latent volume space. However,

the combination of volumetric flow field and post-processing strand

tracing often results in over-smoothed geometry with limited strand-

level detail and inter-strand variation. The objective of our work is to

develop a novel architecture for strand-level hair generation, capable

of synthesizing diverse hairstyles with high-quality dense geometry

in a computation- and memory-efficient manner. To this end, we

aim to establish a new hair representation that is highly compact

and efficient, capable of capturing common hairstyles through a

shared parameterization, and expressive enough to encompass both

global structural characteristics and local fine details.

We introduce GroomGen, a generative model for diverse and high-

quality hairstyle synthesis. Our method is rooted in a hierarchical

hair representation, inspired by the conventional practice of guide-

hair-based authoring in visual effects. We represent a hairstyle

using three levels of abstraction: strand latent codes for individual
strands, low-resolution latent-maps for sparse guide hairs, and high-

resolution strand-maps for dense hairstyles. This hierarchy not

only achieves significant compression, robust training, and efficient

inference without compromising expressiveness, but also establishes

a versatile multi-level embedding space for sampling diverse and

valid hairstyles. Based on this hierarchical representation, we design

the entire hair generation pipeline as three major components:

(1) At the single strand level, we employ a strand variational
autoencoder (strand-VAE) to establish a low-dimensional

latent space for encoding diverse strand geometry.

(2) Building upon the strand latent space, our hairstyle vari-
ational autoencoder (hairstyle-VAE) encodes the sparsely-

sampled guide hairs into a hairstyle feature vector.

(3) To generate dense hair from sparse guide strands, we pro-

pose a GAN-based neural upsampler that synthesizes high-
resolution hair geometry, followed by a heuristic refinement

step that allows user control for customizing details.

Our compact model possesses the capability to represent and

generate diverse hairstyles with high visual fidelity. This versatility

makes it useful for a wide range of applications, such as simu-

lation, generating training data for downstream models through

(un)conditional sampling, serving as a powerful prior for robust

image-based hair reconstruction, and facilitating rapid hairstyle

creation and exploration for artists.

2 RELATED WORK
Strand Representation of Hairs. A common approach to represent

a hair model is by using a collection of hair strands, where each

strand is defined as a polyline consisting of tens or hundreds of

vertices. While this representation is intuitive and expressive, it

often becomes heavy and redundant. To address this issue, pre-

vious works such as [Bertails et al. 2006, 2005] propose to use

the super-helix as a compact approximation of hair strands. This

representation requires only a few parameters per strand, but the

resulting reconstruction is typically over-smoothed. In the recent

work by [Rosu et al. 2022], neural representations of hair strands

are explored. The authors adopt the modulated sine network struc-

ture [Mehta et al. 2021] tomap a strand into a low-dimensional latent

space, achieving superior reconstruction results. In organizing the

strands of a hair model, many previous works [Lyu et al. 2022; Rosu

et al. 2022; Zhou et al. 2018] opt to parameterize the scalp area

using UV unwrapping and assign strands to corresponding pixels.

While such a UV-mapping representation facilitates the exploitation

of spatial adjacency among strands, due to the huge number of

hair strands, a high-resolution UV map is often required, resulting

in significant computational costs. Taking advantage of the local

similarity of human hairs, other works [Chai et al. 2014, 2017; Guan

et al. 2012] propose to use a set of sparse guide strands as proxies for

all hairs, leading to more efficient simulation, which is a common

practice in the industry. In this paper, we choose to utilize the

strand-based representation for its fidelity and flexibility. We follow

the convention of using guide hairs to represent hairstyles, which

helps reduce the computational and memory overhead compared to

representing individual strands directly.

Volumetric Representation of Hairs. An alternative approach to

representing a hair model is through volumetric representation,

where the entire hair volume is voxelized, and each voxel contains

information about the growth direction and other properties of the

hairs within it. This voxelized representation often organizes the

free-growing hairs into regular groups, making the hair structure

easier to capture. Although impressive results [Kuang et al. 2022;
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Saito et al. 2018; Wang et al. 2022; Wu et al. 2022; Yang et al. 2019]

have been achieved, the expressiveness of volumetric representa-

tions is inherently limited by the granularity of the discretization.

The in-voxel fusion process inevitably leads to over-smoothed re-

sults, especially when dealingwith curly hair or instanceswhere hair

strands cross each other within the same voxel. Furthermore, the

use of volumetric representation can be computationally expensive,

particularly when dealing with large volumes of long hairstyles.

Hair Acquisition. Hair capturing is an active and evolving re-

search area. While a few previous works [Herrera et al. 2012; Jakob

et al. 2009] seek to capture hair geometry with specialized devices,

most existing methods for hair capturing rely on consumer-grade

single- or multi-view cameras [Paris et al. 2004, 2008; Wei et al.

2005]. Static hair reconstruction techniques [Beeler et al. 2012; Chai

et al. 2013, 2012; Luo et al. 2013; Nam et al. 2019; Olszewski et al.

2020; Sun et al. 2021; Winberg et al. 2022; Zheng et al. 2023] aim to

reconstruct 2D and 3D hair curves based on single-view visual cues

and multi-view correspondences. The work of [Shen et al. 2021]

seeks to infer hair geometry from user sketches. In addition, dynamic

capturing methods [Hu et al. 2017; Xu et al. 2014; Zhang et al.

2012] take temporal consistency into consideration. Although these

model-free methods demonstrate impressive results, they tend to be

fragile in challenging cases and unconstrained environments due to

the thin strand geometry, occlusion between strands, and complex

hairstyle configurations. To enhance robustness, recent works have

introduced prior models as constraints. Some approaches [Chai

et al. 2015; Hu et al. 2014] employ geometric primitives as con-

straints for individual hairs during capturing, while others utilize

hairstyle databases [Chai et al. 2016; Hu et al. 2015; Liang et al. 2018]

for initialization and guidance, largely improving reconstruction

quality and stability. Furthermore, with the advancements in deep

learning, neural approaches have emerged as the new state-of-the-

art. For instance, the work of [Zhou et al. 2018] captures hair from

monocular images by extracting hairstyle features using convolution

neural networks. The work of [Rosu et al. 2022] combines multi-

view reconstructionwith neural descriptors to achieve photorealistic

telepresence. In addition to strand-based representations, volumetric

methods [Kuang et al. 2022; Luo et al. 2012; Saito et al. 2018; Wu

et al. 2022; Yang et al. 2019] also have made significant progress

in capturing both static and dynamic hair. These works aim to

provide reliable priors for robust and high-quality hair acquisition,

presenting a potential application of our research.

Hair Generation. Compared to hair acquisition, generative hair

models are relatively unexplored. A heuristic example-basedmethod

for hair generation is proposed by [Ren et al. 2021], which is largely

limited by the reference hair models. Variational autoencoder (VAE)

[Kingma and Welling 2014] is widely recognized as one prevalent

generative architecture. In the context of hair modeling with vol-

umetric representation, the work of [Saito et al. 2018] proposes

the utilization of VAEs. However, VAEs often suffer from over-

smoothness issues despite their extensive examination for data

embedding. Generative adversarial networks (GAN) [Goodfellow

et al. 2014] have also demonstrated remarkable results in image

generation [Karras et al. 2019; Radford et al. 2016]. By incorporating

the perceptual discriminator loss, GANs are particularly effective in

Fig. 2. We build a hierarchical representation of human hairstyles. To
generate a hair model, we first draw a random vector from the Normal
distribution in the hairstyle latent space. The vector is decoded by the
hairstyle-VAE to get a low-resolution latent-map, which corresponds to
sparse guide strands. Finally, the neural upsampler synthesizes dense hair
strands from the sparse guide strands, which are further refined heuristically
based on user specification.

recovering fine detail with weak supervision. For our specific task,

we employ both VAEs and GANs, where two VAE models encode

individual strands and overall hairstyles, while another GAN model

is adopted for detail restoration.

3 METHOD
In this section, we present our comprehensive pipeline for hairstyle

generation, tailored specifically for strand-based hair models. Our

algorithm operates on three hierarchical levels of human hair: indi-

vidual strands, sparse guide strands, and the complete hair model

with dense hair strands. Accordingly, we design three components

for each hierarchical level in hairstyle generation: 1) At the single

strand level, our strand variational autoencoder (strand-VAE) estab-
lishes a low-dimensional latent space for encoding strands (Sec. 3.1).

2) Building upon the strand latent space, a hairstyle variational au-
toencoder (hairstyle-VAE) further encodes a hair model, represented

by a collection of sparsely-sampled guide strands, into a feature

vector (Sec. 3.3). 3) A hybrid densification step consisting of a neural

upsampler (Sec. 3.4) and a heuristic refiner (Sec. 3.5) synthesizes

the full hair style from the sparse guides. By connecting all these

components together, our pipeline provides a complete framework

for hair model generation. The overall structure of the pipeline is

illustrated in Fig. 2.

3.1 Strand Latent Space
Our strand-VAEmodule performs the encoding of individual strands,

transforming their Euclidean coordinates into a low-dimensional

strand-wise latent space. This latent space serves as the foundation

for guide strand generation and quasi-static simulation. Compared

to raw Euclidean coordinates, our latent encoding is better regu-

larized to a more constrained distribution of valid strands, without
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sacrificing strand-level geometric details, coherency among strands,

or the overall diversity of the generated hairstyle.

Typically, a strand is represented as a polyline consisting of

𝑁𝑠 uniformly sampled points. Previous work [Rosu et al. 2022]

constructs a latent space based on this polyline representation.

However, we observe that representing strands in the original Eu-

clidean space often has a significant negative impact on the structure

preservation of the resulting latent space, leading to over-smoothed

hair generation. To better retain strand-level details like curliness,

we parameterize the strands in the frequency domain using the dis-

crete Fourier transform (DFT), and establish the strand latent space

based on this frequency representation. As elaborated in Sec. 4.3,

this frequency latent space aligns better with human perception

compared to the spatial latent space.

Formally, in the Euclidean spatial domain, a strand is originally

represented as a polyline with 𝑁𝑠 points: S = {𝒑1,𝒑2, . . . ,𝒑𝑁𝑠
} ∈

R𝑁𝑠×3
(𝑁𝑠 = 100 in our case). We first compute the gradients as

¯S =

{𝒅1, 𝒅2, . . . , 𝒅𝑁𝑠−1} ∈ R(𝑁𝑠−1)×3
with the gradient displacement

𝒅𝑖 = 𝒑𝑖+1 − 𝒑𝑖 , and then equally divide the entire strand into

𝑁𝑔 non-overlapping segments:
¯S𝑖 = {𝒅𝑖𝑘 , 𝒅𝑖𝑘+1

, . . . , 𝒅𝑖𝑘+𝑘−1
}, 𝑖 ∈

{1, 2, ..., 𝑁𝑔} with 𝑘 = ⌈(𝑁𝑠 −1)/𝑁𝑔⌉ denoting the segment size. The

strands are segmented to allow for varying shape statistics along

the strand. In all our experiments, we set 𝑁𝑔 = 3. For each segment,

we apply the DFT along 𝑥,𝑦, 𝑧 axes separately with respect to vertex

indices, obtaining coefficients of Fourier bases F 𝑎
𝑖

∈ C𝑓 , with
𝑎 ∈ {x, y, z} referring to the axes and 𝑓 = ⌊𝑘/2⌋ + 1 representing the

number of frequency bands. Instead of using F directly, we further

decompose it into three parts by taking their physical meanings

into consideration: F𝐴 = abs(F ) ∈ R𝑓 , Fcos = real( F
F𝐴 ) ∈ R

𝑓
, and

Fsin = img( F
F𝐴 ) ∈ R

𝑓
, where abs(·), real(·), and img(·) refer to the

absolute value, real part, and imaginary part of a complex number.

Here, F𝐴 describes the amplitude of each frequency, intuitively

the significance of the strand’s curliness and length; Fcos and Fsin

together describe the phase of the curves. We encode the phase as

vector (Fcos, Fsin) instead of a scalar phase angle to avoid issues

with periodicity. Concatenating F𝐴 , Fcos, and Fsin for all segments

and axes, we obtain a vector V , namely the frequency code, of
𝑁𝑔 × 𝑓 × 3 × 3 = 459 dimensions, to represent a strand in the

frequency domain.

Our strand-VAE takes V as both the input and reconstruction

target. The employed training loss terms include: L1 loss LA for the

amplitude coefficients FA; L1 loss LP for the phase coefficients Fcos

and Fsin; and KL divergence loss L𝑠
𝐾𝐿

with weight 𝜆𝑠
𝐾𝐿

= 10
−4
:

L𝑠 = LA + LP + 𝜆𝑠𝐾𝐿L
𝑠
𝐾𝐿 . (1)

Since the phases of the high-amplitude components play a more

crucial role, the phase loss LP on each frequency is weighted by the

corresponding ground truth amplitude
ˆFA:

LP =

𝑓∑︁
𝑖=1

¯F 𝑖
A
∗ (|F 𝑖

sin
− ˆF 𝑖

sin
| + |F 𝑖

cos
− ˆF 𝑖

cos
|), (2)

¯F 𝑖
A
=

ˆF 𝑖
A∑𝑓

𝑗=1

ˆF 𝑗

A

. (3)

Fig. 3. Illustration of our scalp parameterization (left) and latent-maps with
baldness (right). Visualized using selected 3 axes of the strand latent codes.

Here, ·̂ denotes the ground truth values and
¯F 𝑖
A
represents the

normalized weight for each frequency band 𝑖 . The summation over

the axes and segments is omitted here for conciseness.

The encoder of the strand-VAE consists of a fully-connected

network with 7 layers. Except the input and output layers, each

layer has 1024 hidden units with batch normalization [Ioffe and

Szegedy 2015] and residual connection [He et al. 2016]. It takes

the individual strand representation V as input and compresses

it into a latent code 𝒍 ∈ R𝐷𝑠
. We use 𝐷𝑠 = 64 in our experiments,

resulting in a compression rate of 21.5%. On the other hand, the

decoder follows the modulated sine network structure [Mehta et al.

2021] with 6 layers and 1024 hidden units. Given a latent code 𝒍 , the
decoder generates the vector V , which can then be converted back

to Euclidean coordinates S, with the additional input of the root

position 𝒑1 pre-defined on the scalp.

3.2 Scalp Space Hairstyle Parameterization
We now introduce our representation of hairstyles. Similar to prior

works [Lyu et al. 2022; Rosu et al. 2022; Wang et al. 2009; Zhou

et al. 2018], we define the 2D parameterization of hairs on the scalp

surface as a regular UV map, as illustrated in Fig. 3. The strand

representations are embedded into the UV map at the positions

corresponding to their roots on the scalp. When the strands are

represented by frequency codesV , the corresponding UV map is

referred to as a strand-map; when the strands are represented by

their latent codes, the UV map is called a latent-map. These two
maps can be mutually converted using the strand-VAE.

In our pipeline, we employ two different resolutions for the latent-

maps: 24× 32 (referred to as a low-resolution map where 1 pixel has

side length 1.0−2.9cm) and 216×288 (referred to as a high-resolution

map where 1 pixel has side length 0.1 − 0.3cm). As not all texels

are used, the low-resolution maps usually accommodate around

300 hairs, while the high-resolution ones contain around 25K hairs.

Initially, we generate a low-resolution latent-map that corresponds

to sparse guide strands, and then adopt a hybrid densification step

to generate dense hair strands from the guide strands. This design

choice is motivated by the observation of high redundancy in dense

hairs due to the local coherency of nearby strands. Compared to

directly using high-resolution latent-maps (256 × 256 in [Rosu et al.

2022] and 128 × 128 in [Lyu et al. 2022]), our intermediate repre-

sentation enables better convergence during training and higher
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computational efficiency during inference. This design also aligns

with the common CG practice of using sparse guide strands to model

and control the global hairstyle structure before densification.

Additionally, to ensure generalizability to a broader range of

hairstyles, we incorporate baldness as part of the hairstyle. Baldness

is defined by an additional binary mask, referred to as a baldness-
map within the scalp space, as depicted in Fig. 3.

3.3 Hairstyle Latent Space
Based on the scalp space parameterization, our hairstyle-VAE learns

to generate whole hairstyles utilizing the VAE framework. The input

and reconstruction target for the hairstyle-VAE consist of both the

low-resolution latent-map M𝑙 ∈ R𝑤𝑀×ℎ𝑀×𝐷𝑠
and the baldness-

map M𝑏 ∈ R𝑤𝑀×ℎ𝑀
, where 𝑤𝑀 and ℎ𝑀 represent the width and

height of both maps. Within the hairstyle-VAE, the encoder projects

the latent-map M = {M𝑙 ,M𝑏 } into a single latent vector 𝒉 ∈ R𝐷ℎ

(we set 𝐷ℎ = 512, resulting in a compression rate of 99%), and

the decoder takes the latent vector 𝒉 as input to reconstruct the

corresponding latent-map. The training objective is defined as:

Lℎ = LM𝑙
rec

+ LM𝑏
rec

+ 𝜆ℎ𝐾𝐿L
ℎ
𝐾𝐿, (4)

where LM𝑙
rec

and LM𝑏
rec

are the L1 reconstruction losses for latent-

map M𝑙 and baldness-map M𝑏 , and Lℎ
𝐾𝐿

is the KL divergence loss

with weight 𝜆ℎ
𝐾𝐿

= 0.01.

Our hairstyle-VAE utilizes a concise network architecture. The

encoder part consists of a total of 12 convolutional layers, incorpo-

rating residual connections. Similarly, the decoder is symmetric to

the encoder and employs transposed convolutions for upsampling.

Please see Appendix D for detailed network structures.

3.4 Neural Upsampling
The hairstyle-VAE produces a low-resolution latent-map that rep-

resents sparse guide strands. To further generate a complete hair

model with around 150K strands, we then employ a hybrid densifi-

cation process involving two steps: upsampling and refinement. The

upsampling step outputs a high-resolution strand-map with 25K

hairs, and the refinement step additionally populates the strands by

6 times.

We emphasize that an end-to-end model is less suitable here

because the mapping from sparse guide strands to dense hair strands

is one-to-many, and the user’s involvement is often necessary to

resolve the ambiguity. Our two-step hybrid approach strikes a

balance between simplicity and controllability. In the first step, our

novel neural upsampler automatically populates the strands based

on the guide strands. In the second step, users are allowed to refine

the high-frequency details, providing control over the final results.

In this section, we will introduce the first step of neural upsampling,

while the second step will be elaborated in Sec. 3.5.

In the upsampling step, we aim to estimate a high-resolution

strand-map from a low-resolution one where pixels contain fre-

quency representations F of guide strands. The low-resolution

strand-map is obtained by decoding the output of the hairstyle-VAE

with the strand-VAE. Analogous to image upsampling, we assume

that each dense strand can be viewed as a linear interpolation of its

four neighboring guide strands. Consequently, the task simplifies

Fig. 4. Illustration of interpolating near a parting line. (1) shows the source
low-resolution strand-map where red and green represent strands growing
in opposite directions and the dashed line is the expected parting line. The
ideal interpolation is (2) where the parting line is sharp while other regions
are smooth. The nearest-neighbor interpolation in (3) has aliasing artifacts.
The bilinear interpolation in (4) smooths out the parting line and the strands
may even penetrate the head mesh.

to estimating the interpolation weights of the guide strands at

each position. Trivial interpolation methods are inadequate for

this task due to the significant variation in local smoothness ob-

served in human hairstyles. Bilinear interpolation, for example,

smooths out sharp parting lines and result in hair-head penetration,

while nearest-neighbor interpolation exhibits aliasing artifacts (as

depicted in Fig. 4). Therefore, spatially varying interpolation is often

preferred, but determining an effective interpolation strategy a priori
is challenging. While the industry relies on intensive manual design

for this purpose, we introduce a neural upsampler to automate the

process and ensure realism.

The input of the neural upsampler is a high-resolution multi-

channel feature map that describes the guide strands distribution.

At each pixel, the feature vector is formed by concatenating the low-

frequency components of its four neighboring guide strands, their

bilinear interpolation, and the distances to the guides. Only the low-

frequency components are considered, with a cut-off frequency

set to 𝑓𝑙 = 8. This choice is made because the high-frequency

details have less significance in the interpolation process and will be

refined later on. The output of the neural upsampler is a 5-channel

weight-map, where the first 4 channels represent the weights for

the four neighboring guide strands, and the last channel represents

the weight for the bilinear interpolation of the guide strands. At

inference, each strand 𝑌 on the interpolated high-resolution map is

computed as 𝑌 = 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎4𝑋4 + 𝑎5B(𝑋1, 𝑋2, 𝑋3, 𝑋4),
where {𝑎𝑖 } represent the predicted weights, {𝑋𝑖 } represent the

neighboring guide hairs from the low-resolution map, and B(·)
denotes the bilinear interpolation of guide hairs at the position of 𝑌 .

The bilinear interpolation is an effective shortcut because oftentimes

it already provides a solution close to the optimal one.

The neural upsampler is trained in an adversarial framework

(GAN) [Goodfellow et al. 2014] for two reasons: First, dense hair

interpolation is not a deterministic task and there is no unique

ground truth; Second, for dense hairstyles, it is more reasonable

to perceptually evaluate the hair model as a whole rather than

enforcing per-strand supervision. We devise the neural upsampler

as a 12-layer convolutional network with residual connections and

instance normalization [Ulyanov et al. 2016], and use a large kernel

size of 13 to perceivemore spatial information in this high-resolution

setting (more details in Appendix D). The discriminator has the same

structure as the generator, except that its input is the interpolated

ACM Trans. Graph., Vol. 42, No. 6, Article 267. Publication date: December 2023.



267:6 • Yuxiao Zhou, Menglei Chai, Alessandro Pepe, Markus Gross, and Thabo Beeler

high-resolution strand-map and its output is a score map. The

loss function follows the Wasserstein loss [Arjovsky et al. 2017].

Denoting the neural upsampler as𝐺 and the discriminator as 𝐷 , the

loss function for the discriminator is:

L𝐷 = 𝐷 (H) − 𝐷 (X) + 𝐷 (H)2 + 𝐷 (X)2, (5)

where X is a real strand-map from the dataset andH is a generated

one.𝐷 (H)2
and𝐷 (X)2

are regularization terms that prevent𝐷 (H)
and 𝐷 (X) from being numerically too large. The loss function for

the generator is:

L𝐺 = −𝐷 (H) + 𝜆𝐺 (Lbl

𝐺 + Lg

𝐺
+ Lsum

𝐺 ) . (6)

Denoting the 5-channel interpolation weights estimated by𝐺 asW,

Lbl

𝐺
= |W5 − 1| biases the weight of bilinear interpolation (channel

5) towards 1, Lg

𝐺
=
∑

4

𝑖=1
|W𝑖 | regularizes the weights of each guide

towards 0, and Lsum

𝐺
= |∑5

𝑖=1
W𝑖 −1| softly normalizes the weights.

The regularization weight 𝜆𝐺 is set to 0.1.

3.5 Heuristic Refinement
The high-resolution map generated by the neural upsampler con-

tains 25K strands, which is still fewer than normal human hairs. To

further enhance the quantity and quality of the dense strands, we

introduce a heuristic refinement step that increases the number of

hairs to 150K with fine details. In this step, we provide the user with

creative semantic control over the final appearance. This step can

also be fully automatic with fixed or randomized parameters if a

hands-off approach is preferred, e.g. for large scale data generation.

We start by addressing penetrations (detailed in Appendix C) and

perturbing the frequency representation F with random noise to

increase variation. The scale of the noise can be specified by the

user, allowing for the creation of regular or messy hairstyles. Next,

we perform wisp formation in the Euclidean spatial domain. The

user may specify two parameters: the number of wisps𝑤 and the

stickiness 𝑠 to control the clustering of hairs. We adopt k-means

clustering to identify𝑤 wisp clusters, and then guide each strand

towards the center of its corresponding cluster:

𝛿𝑖 =
𝑠 · min(1, 𝑙𝑖

¯𝑙
)

max(1, 𝑑2

𝑖
)

+
𝑖−1∑︁
𝑘=1

𝛿𝑘 . (7)

We denote the vertex index as 𝑖 , where 𝑖 = 1 is the fixed strand

root with displacement 𝛿1 = 0, and the deformation 𝛿𝑖 of other

vertices is determined by stickiness 𝑠 , distance to the center strand

𝑑𝑖 , and length to the strand root 𝑙𝑖 . To prevent excessive deformation

near the root, we empirically set
¯𝑙 to 5cm as a threshold. This

simple deformation strategy can yield practically satisfactory results

since the neural upsampler provides a good initialization. This wisp

formation is skipped when𝑤 = 0 or 𝑠 = 0. Finally, as the raw output

of the neural upsampler only contains 25𝐾 strands, we duplicate

all strands 6 times with small variations in the frequency domain

again. This allows us to increase the total strand number of the final

model to 150𝐾 , further enhancing its density and realism.

4 EXPERIMENTS AND APPLICATIONS
Extensive experiments are conducted to validate the effectiveness

of our hair generation pipeline. In Sec. 4.1, we introduce the dataset,

training procedure, and system runtime. In Sec. 4.2, we evaluate

each main component of our method. We present ablation studies to

justify the major technical choices in Sec. 4.3. Finally, in Sec. 4.4, we

introduce a quasi-static neural hair simulator as one downstream

application of our model.

4.1 Datasets, Training, and Runtime
The model is trained and evaluated on an artist-created hairstyle

dataset, referred to as GroomHair, which comprises diverse hairstyles

with fine-grained variations. To create the dataset, the artists first

identified 35 base hairstyle categories, encompassing a wide range

of styles such as buzz, bobby, pixie, wavy, afro, and more (see

Appendix F for the complete list). For each category, the artists

utilize Houdini ∗ to create a recipe that defines the desired hairstyles
and generate a series of fine-grained variations (50 − 400 depending

on the hairstyle) of the same category using different parameters.

In some categories, baldness is also modeled, which corresponds

to the baldness-map used by the hairstyle-VAE. The final dataset

contains 7712 data samples, each representing a specific hair model

with approximately 150K strands. We randomly split the entire

dataset into 6940 training samples and 772 test samples. The training

samples are further augmented by horizontal mirroring.

We first train our strand-VAEmodel using theGroomHair dataset.

Subsequently, we fix the strand-VAE model and use it to process the

hair models in GroomHair to obtain the training and testing data

for the hairstyle-VAE.

The strand-VAE and hairstyle-VAE are both trained using the

Adam [Kingma and Ba 2015] optimizer with an initial learning rate

of 10
−3
, which is reduced by a factor of 0.1 whenever the training

loss ceases to improve. The training process continues until the

learning rate reaches 10
−6
. The neural upsampler is also trained

using the Adam optimizer but with a fixed learning rate of 10
−4

for

a total of 105K iterations (around 27 epochs).

We evaluate the runtime performance of each module on a PC

equipped with an Intel Core i9-11900KF CPU and an NVIDIA A100

40GB GPU. The results are summarized in Tab. 1. It is noteworthy

that the runtime measurements for the strand-VAE and hairstyle-

VAE only include the decoder parts of the networks. Our system

exhibits real-time performance, achieving more than 30 FPS for

the generation and simulation of 300 − 500 guide strands, which

is a common quantity in hairstyle authoring. Users can edit the

hairstyle by either tweaking the hairstyle code in the latent space

or modifying the guide strands in the Euclidean space interactively.

The heuristic refinement step typically takes 10 − 15 seconds, and

the optional penetration correction step takes 30 − 55 seconds.

4.2 Evaluation
In this section, we provide a comprehensive assessment of the

components of our system in a bottom-up order. First, we evaluate

the performance of the strand-VAE in encoding individual strands

into the strand latent space. Next, we assess the hairstyle-VAE in

embedding a given hair model into the hairstyle latent space, as

well as generating hair models from this latent space. Finally, we

∗
https://www.sidefx.com/products/houdini/
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Table 1. Runtime and number of parameters of the modules. Our system
achieves real-time performance for generation, editing, and simulating up
to 500 strands before densification.

component runtime (ms)

# params.

# strands 1 300 500 150K

strand-VAE 1.90 14.9 23.5 7670 10.59M

neural simulator 3.26 4.58 4.77 1330 32.74M

hairstyle-VAE 3.42 83.65M

neural upsampler 281 11.22M

Table 2. Quantitative metrics of the strand-VAE, hairstyle-VAE, and neural
simulator. The errors are acceptably low.

strand-VAE hairstyle-VAE neural simulator

pos. err. 1.90mm 7.26mm 8.89mm

loc. err. 0.15mm 0.40mm 0.44mm

demonstrate how the densification step effectively produces realistic

dense hairs from sparse guide strands.

We use the following per-strand metrics. Recall that originally

each hair strand is represented as a polyline S = {𝒑1,𝒑2, . . . ,𝒑𝑁𝑠
}

and the parent-relative displacement is defined as 𝒅𝑖 = 𝒑𝑖+1 − 𝒑𝑖 .
Positional error (pos. err.) calculates the mean distance between

corresponding points of the predicted strands and the ground truth

(indicated by ·̂): ∑𝑁𝑠

𝑖
∥𝒑𝑖 − 𝒑𝑖 ∥/𝑁𝑠 . Local position error (loc. err.)

measures the L2 distance between the gradients of corresponding

points on the strands, without accumulating errors along the hair:∑𝑁𝑠−1

𝑖
∥𝒅𝑖 − ˆ𝒅𝑖 ∥/(𝑁𝑠 − 1). We report these metrics by averaging

them per hair model and then across the entire test set. This ensures

that each hair model contributes equally to the final numbers.

Strand-VAE. We first evaluate the strand-VAE model on the test

set by measuring the reconstruction error of encoding and decoding

individual strands. The quantitative results are reported in Tab. 2

(1st column). The mean reconstruction error is remarkably low,

measuring only 1.90mm. In Fig. 5 we provide a few examples of

strand reconstruction from the test set. As demonstrated, the re-

construction is of high fidelity and the difference is hard to discern.

These results indicate that the strand-VAE effectively constructs a

latent space that serves as a solid foundation for subsequent steps.

Hairstyle-VAE. Next,We evaluate the performance of the hairstyle-

VAE model by encoding and decoding the entire hair model rep-

resented as a latent-map. The reconstructed latent-map is then

decoded by the strand-VAE to obtain hair strands in the Euclidean

space for visualization and error computation. The resulting recon-

struction errors are reported in Tab. 2 (2nd column). As encoding

the entire hair model is generally more challenging, particularly

in our setting where the hairstyle latent vector utilizes only 0.4%

parameters of the guide hairs, we observe relatively larger errors

compared to the strand-VAE. Nevertheless, the average error of 7mm

remains at an acceptably low level, preserving the overall visual

appearance of the hairstyle well as can be seen in Fig. 6, even for

challenging hairstyles (right column) that have not been explored

Fig. 5. Reconstruction results of strand-VAE on the test set by encoding
and decoding each strand. The difference is barely observable. The average
positional errors for the demonstrated samples are (left to right, top to
bottom): 1.41mm, 1.13mm, 1.30mm, and 5.08mm.

Fig. 6. Selected results of our hairstyle-VAE on the test set. Hairstyles are
well-preserved with only 0.4% parameters of the original guide hairs. The
average positional error for the demonstrated samples are (left to right, top
to bottom): 8.35mm, 5.65mm, 24.53mm, 12.76mm, 24.61mm, and 20.68mm.

in previous works. Additionally, our model accurately reconstructs

the baldness-map, a component often overlooked in prior work. The

intersection-over-union (IoU) of the baldness-map on the test set

measures 97.3% when the threshold is set to 0.8.

We now present a series of experiments to showcase the capa-

bility of the hairstyle-VAE in hairstyle generation and authoring.

Firstly, we demonstrate that the latent space of the hairstyle-VAE

is sufficiently well-constrained to allow for meaningful hairstyle

generation by direct random sampling from the Normal distribution,

as shown in Fig. 7. It is worth emphasizing the high local diversity

observed in the generated hair styles, where the strands deviate

from each other frequently, in contrast to previous works where

nearby strands tend to grow in parallel and become over-smoothed.
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Fig. 7. Diverse hairstyles generated by our hairstyle-VAE from random vectors sampled in the hairstyle latent space. We would like to emphasize 1) the
diversity of hairstyles, which comes from the powerful hairstyle-VAE; 2) high local variety of the hairs, which originates from the well-structured frequency
strand latent space.

Fig. 8. Interpolation of hairstyles from left to right in the hairstyle latent
space. While the start and end hairstyles are distinct, the interpolation
trajectory is reasonable.

Fig. 9. Arithmetic between hairstyles: we subtract the hairstyle latent vector
𝒉 of column 2 from column 1 and add the difference to column 3, finally get
column 4. First row: the differences in curliness and length are successfully
transferred. Second row: the difference between column 1 and 2 is the fringe,
which is added to column 3 and gives us column 4. The hairstyles in the last
column are not in the original dataset.

Additionally, we show that hairstyles can also be generated by

traversing the latent space through interpolation, as shown in Fig. 8.

Despite the distinct characteristics of the starting and ending hair

models, the interpolation path in the hairstyle latent space remains

semantically valid. This demonstrates the flexibility of our model in

generating new hairstyles with controllable attributes.

Furthermore, we explore another interesting application of arith-

metic operations between hairstyles, as shown in Fig. 9. Denoting

the hairstyle latent vector of column 𝑖 as 𝒉𝑖 , we compute 𝒉∗ =

𝒉1 − 𝒉2 + 𝒉3 and decode 𝒉∗ to produce the resulting hair model.

This simple arithmetic aligns well with human intuition and can

generate novel hairstyles that do not exist in our dataset.

The most similar previous work is Volumetric Hair VAE (VHV)

of [Saito et al. 2018] that learns the latent embedding of hair models

from volumetric representation. However, a fair comparison is

challenging due to fundamental differences in tasks (capture vs.

generation), hair representations (voxels vs. strands), and datasets.

For a rough comparison, we convert our predicted strands into

volumetric representations and report the numbers in Tab. 3 (note

that the test sets differ). The metrics of IoU, precision, and recall

evaluate the correctness of strand occupancy in the space. While

our latent space is much more compact than that in VHV, our

method still outperforms VHV on these metrics. It is noteworthy

that our method exhibits higher error on the growing flows due to

the fact that the volumetric representation in VHV fuses growing

directions within the same voxel, which conflicts with our strand

representation without any fusion. Furthermore, our model can

generate hairstyles simply from random sampling, while VHV only

demonstrates interpolation of given similar hairstyles. Please find

qualitative comparisons with VHV in Appendix E.

Hybrid Densification. In the densification step, we utilize our

neural upsampler to increase the number of strands by upsampling

low-resolution latent-maps to higher resolution. This is followed by
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Fig. 10. Output from our neural upsampler based on our hairstyle-VAE reconstruction. Our method produces the most natural results, and the weight maps
(please refer to 4.2 for an explanation) reveal the parting lines correctly. Nearest neighbor (NN) interpolation shows unrealistic abrupt changes between
patches. Bilinear (BL) interpolation has severe hair-head penetration issues near the parting line.

Fig. 11. Our results after refinement. Each group is produced from the same output of the neural upsampler. The parameters effectively control the fine details
without losing realism. Note the complex wisps structures, e.g. row 1 column 5, originates from the generated guide strands with high local variety.

Table 3. A rough comparison with VHV [Saito et al. 2018]. Our method
has higher IoU, precision, and recall, which suggests better estimation of
strand occupancy in the space. Our method has a slightly higher L2 flow
error because we use a strand-based representation. Notably, ours has a
much more compact latent space that supports direct random sampling.

IoU Precision Recall L2 (flow) latent dim.

VHV 0.8243 0.8888 0.9191 0.2118mm 6144

ours 0.9426 0.9777 0.9626 0.2807mm 512

a heuristic refinement process with user-defined parameters. Please

note that all the results presented in this step are based on the

hairstyle-VAE’s reconstruction and not ground truth guide strands.

We first evaluate the neural upsampler. In Fig. 10, we show a few

representative hair models produced by the neural upsampler and

Table 4. Hair-head penetration rate of different interpolation methods.
Our GAN-based neural upsampler avoids the aliasing artifacts in nearest
neighbor interpolation but also keeps the parting line sharp, as indicated
by a very low penetration rate.

ours NN BL full sup. latent pred.

rate 1.5‰ 0.0‰ 5.0‰ 2.1‰ 195.5‰

compare them with alternative methods including nearest-neighbor

(NN) and bilinear (BL) interpolation in both Euclidean and strand

latent spaces. To visualize the weight-maps intuitively, we factorize

the weight for bilinear interpolation into individual guide strands

and colorize each pixel based on the standard deviation (std) of the
weights. Larger std values indicate sharp transitions, while smaller

std values reflect smooth interpolations. The emerging grid-like
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Fig. 12. Averaging two curly strands (column 1, blue strands) based
on spatial representations (column 2 and 3, magenta strand) results in
straight strands in both original space and latent space. While frequency
representation (column 4, magenta strand) preserves the curliness, averaging
in the latent space (column 5, magenta strand) gives the most natural result.

Table 5. Positional error (pos. err.) and relative messiness (rel. mes.) for
hairstyle-VAE variants. The unit is millimeter. Our method has better
reconstruction error and also similar levels of hair messiness as the ground
truth data. Other models are either over-smooth or less accurate.

latent space original space

freq. (ours) spat. dense spat. freq.

pos. err. 7.25 7.08 9.80 7.07 8.47

rel. mes. -0.05 -0.11 -0.23 -0.20 -0.08

structure illustrates how interpolation is inhibited when close to the

guides and parting lines, while being smooth otherwise. To make

artifacts more obvious, we remove all strands that penetrate the

head mesh. In the first row of Fig. 10, our learned upsampler not only

preserves the parting line but also avoids aliasing patterns observed

in the NN interpolation (column 3 & 5). The presence of baldness in

the bilinear interpolations (column 4 & 6) indicates severe penetra-

tions when interpolating strands from opposite sides of the parting

line. In the second row, our estimated parting line correctly ends

before the fringe. Additionally, we report the percentage of hairs

that penetrate the head mesh after upsampling in Tab. 4. Our neural

upsampler stands out with a very low penetration rate, indicating

that it accurately identifies most hairstyle parting lines. Please see

Appendix A for more results of the neural upsampler.

In Fig. 11 we demonstrate the final results after the refinement

step. Each group presents three hair models produced from the

same output of the neural upsampler but with different user-defined

parameters. Note that the intricate wisp structures, such as the one

shown in the first row, fifth column, are rarely seen in previous

works. The high fidelity of these structures is a result of our strand-

level representation of hair models in the frequency latent space.

Please find more results in Appendix A.

4.3 Ablation Study
In this section, we provide justifications for the important technical

choices made in our approach. We first explain why our frequency

representation of strands leads to a better latent space compared to

conventional spatial coordinates. Then, we demonstrate the superi-

ority of our GAN-based neural upsampler over other alternatives

for strand-map upsampling. Lastly, we highlight the suitability of

our hierarchical structure for representing a hair model.

Fig. 13. The frequency hairstyle-VAE (ours) achieves significantly better
local variety while other alternatives with different strand representations
or latent spaces suffer from over-smoothness.

Strand VAE. Our method begins by constructing a compact latent

space for strands, which effectively reduces the dimensionality

while preserving high-fidelity shape information. Among various

shape features, we consider length and curliness to be the most

crucial ones. We opt to build the strand latent space in the fre-

quency domain (frequency latent space), motivated by the fact that

the Fourier spectrum explicitly encodes both features. In contrast,

spatial coordinates do not directly represent curliness, so that the

latent space thereon (spatial latent space) is not always consistent
with respect to curliness. Consequently, two visually similar curly

strands may be embedded far apart in this spatial latent space, while

a straight strand and a curly strand may appear closer to each other.

Such counter-intuitive issues are avoided in the frequency latent

space. To validate this claim, we conduct additional experiments

by training a separate strand-VAE model using spatial coordinates

(spatial strand-VAE) and subsequently a hairstyle-VAE based on it

(spatial hairstyle-VAE). We refer to our main models in the frequency

domain as frequency strand-VAE and frequency hairstyle-VAE.
We first present an intuitive explanation for our reasoning in

Fig. 12. We pick two curly hairs from our dataset and average them

based on their spatial coordinates. The resulting strand appears

straight and loses its curliness (column 2). Averaging in the spatial

latent space leads to a similar outcome (column 3). In contrast, if the

averaging is performed on the frequency codeV , the curliness is

better preserved (column 4). The most meaningful result is obtained

when the averaging is conducted in the frequency latent space

(column 5). This is because, in the frequency domain, the averaging

is applied independently to the amplitudes and phases. If both source

strands have similar amplitudes but different phases, their mean will

maintain the amplitude (i.e., curliness) while undergoing a phase

shift. Consequently, the frequency latent space aligns better with the

human perception of hair shapes, where curly and straight strands

are distinguished regardless of their spatial proximity. Please find

more results of strand interpolation in Appendix B.

This inherent structural distinction between the spatial and fre-

quency strand latent spaces significantly influences the performance

of the hairstyle-VAEs residing within them. This impact is shown in
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Fig. 14. Densification results from different upsamplers. Our method
(column 1& 2) works well on diverse hairstyles. Trainingwith full supervision
(column 3 & 4) is comparable to bilinear interpolation. Directly learning
strand geometry fails to converge (column 5).

Fig. 13, where the frequency hairstyle-VAE (2nd column) exhibits a

high level of local variety that closely resembles the ground truth,

while the spatial hairstyle-VAE (3rd column) produces overly smooth

results. In real hairstyles, it is quite common for adjacent strands to

grow in opposite directions, resulting in interesting local variations.

However, the embeddingwithin the spatial domain tends to diminish

such local variety, whereas the frequency domain preserves it better.

To quantitatively assess local variation, we introduce the messi-
ness metric, defined as follows. For each strand 𝑖 , we calculate its

mean deviation relative to its neighbors:

D𝑖 =
1

|N𝑖 |
∑︁
𝑗∈N𝑖

1

𝑁𝑠 − 1

𝑁𝑠−1∑︁
𝑘=1

| |𝒅𝑖,𝑘 − 𝒅 𝑗,𝑘 | |2, (8)

where N𝑖 represents the neighbors of strand 𝑖 , and 𝑑𝑖,𝑘 denotes the

parent-relative displacement of vertex 𝑘 of strand 𝑖 . The messiness

metric is defined as the mean D𝑖 of all strands, characterizing the

uniformity of a hair model. A higher messiness value indicates

greater local variety, while a lower value suggests a regular and

smooth hairstyle. We report the difference in messiness relative to

the ground truth dataset (0.428mm), where a lower value indicates a

smoother result. As shown in Tab. 5 (rel. mes.), although our method

produces a slightly more regular outcome compared to the ground

truth, the spatial hairstyle-VAE exacerbates the gap, resulting in a

doubling of the difference in messiness.

Notably, while positional encoding (PE) [Mildenhall et al. 2020]

shares certain high-level similarities with discrete Fourier transform

(DFT), they are substantially different in our context. PE considers

the coordinates individually and expands each scalar value to a high-

dimensional vector, while DFT considers a sequence and transforms

it into the Fourier domain with the same dimension. For comparison,

we train another strand-VAE based on PE and a corresponding

hairstyle-VAE, and observe similar local over-smoothness (relative

messiness: -0.11) as the vanilla spatial representation. This is because

PE does not considers the strand shape as a whole. The average pos.

error (strand-VAE: 1.70mm, hairstyle-VAE: 6.89mm) is also similar.

Neural Upsampler. The challenge of hair densification is two-fold.

Firstly, the sparse guide strands only provide a general depiction of

the overall hairstyle, making the mapping to dense hair strands

indeterminate without unique ground truth. Secondly, humans

perceive hairstyles holistically rather than focusing on individual

strands. Per-strand supervision becomes impractical when dealing

with as many as 25K strands. Therefore, we choose to adopt a GAN

model for perceptual supervision.

To highlight the advantages of our GAN-based neural upsampler,

we train an alternative model using full supervision. The ground

truth data is generated by downsampling the hair models in our

database. However, we find that this model cannot be effectively opti-

mized and only converges to a local optimum that closely resembles

bilinear interpolation. This occurs because the model attempts to

learn a deterministic mapping that does not exist. The weight maps

and qualitative results of this fully supervised model exhibit similar

unnatural artifacts as bilinear interpolation and lack awareness of

parting lines, as shown in Fig. 14 (column 3 & 4).

We choose to predict interpolation weights instead of strand

geometry due to the greater constraints imposed on the weights.

This leads to more stable training for the fragile GAN model. As

an ablation analysis, we train another model that directly predicts

strand latent codes using a discriminator loss. This model fails to

converge to a valid solution and only generates meaningless strands,

as shown in Fig. 14 (column 5) and Tab. 4 (column latent pred.).

Hierarchical Structure. Representing hairstyles with a hierarchical
structure is one of our main design choices. We demonstrate the

necessity of each level in the following analysis. At the strand level,

encoding strands into a low-dimensional latent space effectively

simplifies the generation task. To verify this, we conduct an ablation

study by removing the strand-level abstraction.We train two alterna-

tive hairstyle-VAE models that directly take strand geometries from

the original space. These models are denoted as ori. spat. (strands
represented as spatial gradients

¯S in the original space) and ori.
freq. (strands represented as frequency codes V in the original

space). They share the same network structure as our standard

hairstyle-VAE, except for different input and output dimensions.

The quantitative evaluations are reported in Tab. 5. Although the

ori. spat. variant achieves a slightly lower positional error, it suffers

from over-smoothness, as shown in Fig. 13 (4th column). On the

other hand, the ori. freq. variant produces a considerably worse

reconstruction error, reported in Tab. 5.

At the hairstyle level, we utilize a set of sparse guide strands to

describe a hair model instead of dense strands. Using guide strands

as an intermediate descriptor is crucial for reducing the complexity

of the task. In our case, dense strands are represented by a latent-map

of shape 216×288×65, containing more data than a high-resolution

(1280 × 1024) RGB image. Compressing such a large amount of data

into a low-dimensional vector poses a challenging task in its own

right, let alone that no control is provided to the user in such an

end-to-end model. For the ablation study, we remove the sparse

guide strands level modeling and train an alternative hairstyle-VAE

model that learns the mapping directly from dense strands to a

single latent hairstyle vector, denoted as dense in Tab. 5. Despite

having 1.6 times more parameters than the combined hairstyle-VAE

and neural upsampler, this model still has worse reconstruction

error and struggles with local over-smoothness.
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Fig. 15. Our neural simulator gives plausible estimations for diverse
hairstyles and head poses. It runs in real-time for up to 3K hairs, while
conventional industrial simulators may take minutes.

4.4 Application: Quasi-Static Simulation
As an example application based on the latent representation of a

hairstyle, we introduce a quasi-static simulator. Regarding the shape

of a hairstyle with the straight head pose as the rest state, the neural

simulator estimates hair deformation driven by different head poses.

We model hair in the head coordinate frame, where the head is fixed

while the direction of gravity can vary. Thus, the task is formulated

as predicting strand deformation given a specific gravity direction.

Our quasi-static simulator is a neural network that takes as input

a reference latent code 𝒍𝑟 ∈ R𝐷𝑠
of the target strand under standard

gravity (−𝑦 direction), the position of the strand root 𝒑1 ∈ R3
, and

the new direction of gravity 𝒉 ∈ R3
. The output is the latent code

of the deformed strand. We design the network to be of 33 fully-

connected layers with 1024 hidden units and residual connections,

optimized using the L2 loss of the target latent codes. The training

data is built from GroomHair where the head is randomly tilted

and the equilibrium state of the guide strands is simulated using

Houdini. The deformed strand geometries are embedded into the

strand latent space with the pre-trained strand-VAE.

As shown in Tab. 2 the average error of the neural simulator

is only 9mm. In Fig. 15, we provide qualitative results where the

predicted deformation closely matches the ground truth. Compared

to conventional methods, the neural simulator is faster by 3 magni-

tudes (Tab. 1), but still achieves satisfying quality, suggesting that

the latent representation can support complex downstream tasks.

Fig. 16. Failure cases that are generated from random sampling. Top row:
unnatural hairstyles do not conform to human aesthetics. Bottom row:
physical artifacts such as penetration and flying long strands.

5 CONCLUSION
In this paper, we present the first generative hair model capable

of automatically synthesizing diverse hairstyles. We demonstrate

the effectiveness of embedding hairstyles into latent spaces with

significantly fewer parameters through hierarchical decomposition.

The strand latent space, based on frequency components, reduces

dimensionality while preserving fidelity. The hairstyle latent space is

well-constrained for generating guide strands. The neural upsampler

effectively densifies guide strands into dense hairs, and the heuristic

refinement process produces realistic final results with user control.

Limitations. First, the generation capability of our model is in-

herently bounded by the diversity of the dataset. The majority of

the dataset comprises everyday hairstyles, while certain styles like

braids are not adequately represented. Second, the entire system

is trained on a specific head shape, embedded within the network

weights. While the UV parameterization allows for adaptation of

generated hair models to different head shapes to a certain extent,

penetrations may still occur since no explicit information about the

head mesh is provided to the system. Lastly, our current system does

not explicitly consider physical attributes. The empirically devised

wisp formation and penetration refinement steps lack a solid phys-

ical foundation, and the neural simulator infers hair deformation

solely based on the rest shape and pre-defined gravity. In Fig. 16 we

show a few failure cases from random generation.

Applications. The primary application of this work is automatic

hairstyle generation. With the well-structured hairstyle latent space

and the refinement steps, our method is capable of generating hair

models that go beyond the training data to a certain extent. The

hierarchical modularization of the pipeline also allows for human

involvement, where artists can edit the generated guide strands

before the automatic densification step or fine-tune the heuristic

parameters for more precise control during the refinement stage.

Additionally, we anticipate that the strand and hairstyle latent space

can serve as reliable priors for hair geometry acquisition, leading to

a hair capturing system that starts by optimizing the hairstyle and

strand latent codes to fit the observed data.
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A ADDITIONAL RESULTS
In Fig. 17, we present the raw outputs of the neural upsampler to

evaluate its densification power as an individual module. In Fig. 18

we demonstrate various combinations of the user parameters.

B STRAND INTERPOLATION
In Fig. 19, we compare interpolation trajectories of two distinct

strands in different latent spaces. Interpolation in the spatial latent

space demonstrates unstable curvature changes, while interpolation

in the frequency latent space aligns better with human perception.

Moreover, we quantitatively examine the jittering effect during

strand interpolation with different representations. We randomly

select 10K strand paris from the test set and perform interpola-

tion between them with 98 intermediate sample points. For each

interpolation sequence, we then compute the jitter metric [Flash

and Hogan 1985], defined as the third derivative of position by

assuming the time interval is 1 second, where a smaller value means

a smoother transition. As shown in Tab. 6, the transition in the

frequency latent representation is as smooth as the spatial-latent

representation with better curvature preservation. This suggests

that the frequency-latent space is better structured.

C PENETRATION REFINEMENT
Our system is based on the same head geometry and the detailed

head shape is not explicitly considered. Although the shape infor-

mation is partially baked into the weights of the neural networks,

penetrations still happen occasionally. To mitigate the penetration

artifacts and preserve the hair structure as much as possible, the

following refinement is performed. For each strand in the Euclidean

space, we traverse its vertices from root to tail. At vertex 𝒑𝑖 , we
check if the vertex ahead, 𝒑𝑖+𝑘 , is within the head mesh using a

pre-computed signed distance field. If 𝒑𝑖+𝑘 is inside the mesh, we

compute the minimal rotation angle 𝜃 that pushes 𝒑𝑖+𝑘 out of the

mesh along the normal 𝒏 of the nearest surface with 𝒑𝑖 as the
rotation pivot and 𝒃 = (𝒑𝑖+𝑘 − 𝒑𝑖 ) × 𝒎 as the axis. The vertices

𝒑 𝑗 ( 𝑗 >= 𝑖) are rotated by 𝜃𝑖 = 𝜃 ∗ 𝛿 𝑗−𝑖−𝑘/2
. After traversing all the

vertices, we remove the strands that still penetrate the head mesh.

We empirically set 𝑘 = 20, 𝛿 = 0.9 for all experiments.

Fig. 17. Raw outputs from our neural upsampler. It effectively populates
the guide hairs, preserves the shape, keeps the parting lines, and avoids
unnatural patterns.

Table 6. The jitter metrics of strand interpolations in different domains.
While vanilla Euclidean interpolation is most smooth, our latent representa-
tion in the frequency space is similarly smooth as the spatial one.

Euclidean spatial-latent frequency-latent

jitter (mm/s
3
) 0.69 0.89 0.97

Table 7. Detail structure of the hairstyle-VAE model (encoder part). The
decoder is symmetric. The residual connections are between layers 1 & 3, 4
& 6, and 7 & 9 using bilinear downsampling. Layer 11 gives the final output
with 1024 channels, half of which represents the latent vector while the
other half is the log variation used for the reparameterization trick in VAE
training. Layer 12 is used in the residual connection between layer 1 and 3
to align the number of channels after downsampling.

layer number input size convolution

1 24 × 32 × 65 (1, 1, 65, 2048, 1)

2 24 × 32 × 2048 (3, 3, 2048, 2048, 2)

3 12 × 16 × 2048 (1, 1, 2048, 512, 1)

4 12 × 16 × 512 (1, 1, 512, 2048, 1)

5 12 × 16 × 2048 (3, 3, 2048, 2048, 2)

6 6 × 8 × 2048 (1, 1, 2048, 512, 1)

7 6 × 8 × 512 (1, 1, 512, 2048, 1)

8 6 × 8 × 2048 (3, 3, 2048, 2048, 2)

9 3 × 4 × 2048 (1, 1, 2048, 512, 1)

10 3 × 4 × 512 (3, 4, 512, 1024, 1)

11 1 × 1 × 1024 (1, 1, 1024, 1024, 1)

12 12 × 16 × 65 (1, 1, 65, 512, 1)

Table 8. Detail structure of the neural upsampler (generator part). The
discriminator is the same except the first and last layers. The residual
connections are between layers 4 & 6, 7 & 9, and 10 & 12.

layer number input size convolution

1 216 × 288 × 364 (1, 1, 128, 364, 1)

2 216 × 288 × 128 (13, 13, 128, 128, 1)

3 216 × 288 × 128 (1, 1, 128, 128, 1)

4 216 × 288 × 128 (1, 1, 128, 128, 1)

5 - 6 same as layer 2 - 3

7 - 9 same as layer 4 - 6

10 - 11 same as layer 4 - 5

12 216 × 288 × 128 (1, 1, 128, 5, 1)

D NETWORK STRUCTURES
In Tab. 7 and Tab. 8 we provide the detailed structure of our hairstyle-

VAE and neural upsampler, respectively. The input size is formatted

as ℎ × 𝑤 × 𝑐 where ℎ, 𝑤 , and 𝑐 are height, width, and channels.

The convolution is formatted as (kernel height, kernel width, input

channels, output channels, stride).

E QUALITATIVE COMPARISON WITH VHV
To qualitatively compare our model with the seminal work of VHV

[Saito et al. 2018], in Fig. 20, we present VHV reconstruction re-

sults of the rendered hair models generated by our method. While
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Fig. 18. Hair models from the same guide strands but varied user parameters.

Fig. 19. Interpolation trajectories between a short strand and a long wavy
strand in different latent spaces. Top: spatial latent space; Bottom: frequency
latent space. The frequency representation preserves the curvature better.

VHV can recover the overall hairstyle well, some strand- and wisp-

level details are missing, partially due to the limited capability of

volumetric representations. Furthermore, some styles, such as the

bottom-right hair model, are beyond the coverage of VHV. Note that

this is not a strictly fair comparison as VHV is reconstructing the

hair model only from a single-view image, and the face alignment

step in the original method does not work on our non-photorealistic

face rendering.

Fig. 20. VHV reconstruction results of the rendered hair models generated
by our method. While the overall hairstyles are successfully recovered, the
reconstructions suffer from over-smoothing and lack of high-fidelity details.

F DATASET
In Fig. 21we visualize the complete list of 35 base hairstyle categories

that constitute our dataset, which covers awide variety of hairstyles.
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Fig. 21. All 35 base hairstyle categories of our dataset.
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