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Figure 1: We present ShellNeRF - a novel method for high-resolution novel view synthesis and animation of the periocular face region. Our
method allows for controlling expressions and eye gaze and renders novel views at an unprecedented level of detail.

Abstract
Eye gaze and expressions are crucial non-verbal signals in face-to-face communication. Visual effects and telepresence de-
mand significant improvements in personalized tracking, animation, and synthesis of the eye region to achieve true immersion.
Morphable face models, in combination with coordinate-based neural volumetric representations, show promise in solving the
difficult problem of reconstructing intricate geometry (eyelashes) and synthesizing photorealistic appearance variations (wrin-
kles and specularities) of eye performances. We propose a novel hybrid representation - ShellNeRF - that builds a discretized
volume around a 3DMM face mesh using concentric surfaces to model the deformable ‘periocular’ region. We define a canoni-
cal space using the UV layout of the shells that constrains the space of dense correspondence search. Combined with an explicit
eyeball mesh for modeling corneal light-transport, our model allows for animatable photorealistic 3D synthesis of the whole eye
region. Using multi-view video input, we demonstrate significant improvements over state-of-the-art in expression re-enactment
and transfer for high-resolution close-up views of the eye region.

CCS Concepts
• Computing methodologies → Motion capture; Physical simulation; Image-based rendering; Mixed / augmented reality;
Volumetric models; Parametric curve and surface models; Appearance and texture representations; Shape representations; 3D
imaging; Reconstruction;

1. Introduction

"...the impression of life was gleaned from the eyes more than from
other facial features" [LW10] – eyes play a crucial role in inter-
personal communication, more so than any other form of body-
language [CH19]. Such non-verbal signals extend beyond just the

eye gaze, involuntary eye expressions ranging from blinking to gap-
ing also play distinct roles [Kre15, LA17, DJJ22]. But the interpre-
tation of such facial expressions varies significantly across indi-
viduals and cultures [EP13, JGY∗12]. Facial performance capture
systems for media or telepresence can achieve authentic immersive
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communication only if the underlying face models are personal-
ized and faithfully reconstruct and render gaze and eye expressions
of the subject.

The challenge of building adequate models stems from the com-
plex physics of the eye region – thin geometry of eyelashes, intri-
cate deformation of eyelid and surrounding wrinkles, complex light
transport of eyeball surface and subsurface scattering of skin. This
is further exacerbated by the wide range of motions – eyeballs ex-
hibit rigid movements like fixation, saccades and smooth-pursuit,
while the ‘periocular’ region (face region around the eyeball) show
several voluntary and autonomic expressions like winking, blink-
ing, squinting, drooping and widening. This requires solving 3 cru-
cial sub-problems for the eye region – i) 3D reconstruction & track-
ing ii) driveable animation iii) photorealistic 3D view-synthesis.

Traditional graphics-based techniques focus on modeling sub-
regions such as eyeballs [BBGB19, BBGB16, BBN∗14], eyelids
[BBK∗15] or the surrounding skin [KADM22]. Parametric face
and eye models have been particularly successful at geometric
tracking and animation of the eyeball pose and eyelid contours
[WBM∗16,WXLY17]. These methods excel in tracking and anima-
tion, but suffer from the limitation of the underlying mesh model –
they cannot reconstruct the thin geometry of eyelashes, often can-
not drive eye expression meaningfully and achieve only a synthetic
rendering quality.

Recent developments in neural volume rendering for dynamic
faces have enabled reconstruction of volumetric effects (including
hair and eyelashes) and achieve perceptual photorealism [PSB∗21,
PSH∗21]. They jointly optimize a deformation network that per-
forms 3D correspondence search and an implicit canonical volume
with localized surface boundaries using a coarse-to-fine importance
point sampling strategy, which is inherently ambiguous. They rely
on dense data from thousands of frames from slow-moving videos
with slowly-changing expressions to successfully constrain this op-
timization. [LMM∗22] combine such a dynamic implicit volume
with an explicit eyeball mesh that models ray-surface interactions
such as corneal reflection and refraction to achieve photorealistic
view-synthesis and relighting of the eye region. While such meth-
ods work well for performance capture and may interpolate within
the training frames, they do not provide any means to control or
drive more general expression animations.

State-of-the-art techniques have achieved drivable animations
for faces by anchoring such canonical neural volumes to a para-
metric face model [GTZN21,AXS∗22,BTH∗23,LSS∗21,CSK∗22,
GKE∗22, MESK22]. The underlying 3DMM face models, while
good at pose tracking and broad expression changes, are low-
dimensional and have limited capacity to model fine-scale wrin-
kles, hence rely on learning an additional 3D deformation field.
Our experiments show that they still struggle with finer deforma-
tions required to faithfully generate eye expressions, possibly due
to the inherent ambiguity of surface localization and dense non-
rigid registration in 3D, particularly with sparse input data.

We propose a novel technique for tracking, animation and pho-
toreal synthesis of gaze and eye expressions of a subject captured
in a sparse multi-view camera setup. Taking inspiration from Shell
Maps [PBFJ05], we develop a novel volumetric representation –
ShellNeRF – defined by equidistantly placed concentric surfaces

around a parametric face mesh. It defines a fully differentiable,
one-to-many mapping from world space to a canonical UVD space
– defined by the UV layout of the 3DMM and indexed ‘depth’ of
the shell. The constrained scene volume between the first and last
shell reduces the space of the correspondence search, whereas the
intermediate shells allow for efficient parameterization of sample
locations through barycentric interpolation. We add a residual de-
formation field conditioned on the local geometry gradient to solve
for fine-scale errors. We combine this with an explicit eyeball mesh
resulting in a holistic pipeline for animation and synthesis. To sum-
marize:

1. We propose a novel volumetric “shell” representation anchored
on a parametric face 3DMM that models personalized appear-
ance and dynamics of the eye region.

2. We show state-of-the-art quality in animating and re-enacting
gaze and eye expressions using only 3DMM expression param-
eters, particularly for close-up high-resolution views.

3. We experimentally evaluate our proposed model and show sig-
nificant improvements over baseline SOTA methods.

2. Related Work

2.1. 3D eye modeling and synthesis

Personalized graphics model of an eyeball have been physically
modeled from multi-view images [BBN∗14] or even a single in-
the-wild image using data-driven priors from shape and texture
databases [BBGB16]. Artist designed physical parametric eye-
ball models have been fit to multi-view images using annotated
keypoints and contours [BBGB19]. The folding motion of eye-
lid and resulting self-occlusion have also been temporally recon-
structed [BBK∗15]. 3D morphable models have been crucial to
automated tracking and animation of eyeballs and periocular re-
gion [WBM∗16], with special emphasis on tracking eyelid con-
tours [WXLY17]. The periocular skin region exhibits complex de-
formations; data-driven techniques from multi-view captures have
successfully achieved accurate reconstruction using either mesh
[KADM22] or volumetric representations [LMM∗22], with lim-
ited capacity to animate by interpolating between captured training
gazes/expressions. [SWW∗20, CSK∗22] generate plausible gaze
and periocular animations by conditioning their underlying face
mesh and implicit volume respectively on the gaze direction for
egocentric cameras in VR applications.

2.2. Volumetric face tracking & reconstruction

Many techniques have been proposed for face tracking and synthe-
sis in the literature [ZTB∗18, KRP∗15], we limit the discussion to
neural volumetric given their unparalleled photorealism. [PSB∗21]
modeled face expressions using a learnt warp field that mapped
image-space observations to a canonical volume, with incredible
success. This was extended to [PSH∗21] expressions that involve
topological changes such as mouth opening. But these methods de-
mand dense views from a slowly moving camera to solve the dense
tracking, and are not animatable.

SOTA methods use 3DMMs that provide approximate rigid
and non-rigid tracking of the face geometry, and then learn a
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residual 3D correspondence similar to previous methods to model
higher-order effects like wrinkles and challenging regions like hair
and eyelashes [HPX∗22, AXS∗22, GTZN21, CSK∗22, BTH∗23,
LHR∗21, XFM22].

2.3. Discrete neural volume representations

Concurrent work [GKE∗22] naturally extends the 3DMM surface
mesh to a tetrahedral volumetric mesh to model deformable faces.
Recent techniques have also used features learnt on the nodes of a
regular grid and interpolating them to arbitrary points in 3D space
to define a volumetric field [CFHT23]. The complexity of training
a dense neural network to model a volume has been eased by sacri-
ficing network parameters and instead storing learnt feature vectors
in a multi-resolution hash grid that is quicker to access [MESK22].
This scheme has also been utilized by concurrent work [ZBT22]
to efficiently learn a personalized dynamic face model by creat-
ing a multi-resolution hash encoding around a canonical 3DMM
mesh, and mapping corresponding points from the tracked mesh
in observation space. One representation somewhat similar to ours
is [DYXT22]. They learn a series of 2D manifolds or isosurfaces
for an object category, such as faces, and sample points on the
ray-surface intersections rather than in the 3D space. This repre-
sentation is extended to animate faces by learning a warp field
conditioned on 3DMM expression parameters [WDY∗22], but they
achieve only generic expression animation without personalization.

Our method is broadly derived from developments in each of
these fields, but presents a novel way to constrain and control the
periocular volume using concentric shells around the 3DMM mesh.
We take inspiration from shell maps [PBFJ05], which defines a
mapping between a world space shell, constructed using underly-
ing surface to a 3D texture space. A volume defined in this space
implicitly allows for control over the entire volume by deforming
the mesh. However, this method was proposed only in the context
of traditional computer graphics and is being used in the context
neural deformable tracking and reconstruction for the first time.

3. Preliminaries

A Neural Radiance Field (NeRF) [MST∗20] represents a scene as a
radiance volume f : (x,d)→ (c,σ) which maps 3D locations x and
view direction d to color c and density σ. In the original setting,
this function was represented and optimized using a multi-layer
perceptron (MLP), with a view-independent density. Pixel colors
are rendered by integrating these values along each corresponding
camera ray. Given some predetermined near and far camera plane
tn and t f , the color of a pixel C(r) on a ray r can be computed using
the following equation:

C(r) =
∫ t f

tn
T (t)σ(r(t))c(r(t),d)dt,

where T (t) = exp
(
−

∫ t

tn
σ(r(s))ds.

)
In practice, this is estimated using ray-marching with a discrete

number of sample points. In the original NeRF formulation, a two

pass method is utilized, by first uniformly sampling between the
near and far planes, and then importance sampling based on the
sample weights defined by T (t)σ(r).

Nerfies [PSB∗21] extends NeRFs to dynamic temporal scenes.
They map all observed world space points x to a canonical space
using a warp function w : (x,ω)→ (x’). This warp function is con-
ditioned on a learned per-temporal-frame latent code ω. Evaluating
f (w(x,ω),d) instead of f (x,d) yields the NeRF at the temporal
frame associated with code ω.

4. Method

Our focused goal is to model the dynamic periocular face re-
gion as a deformable canonical volume with explicit control over
the expression. To this end, we present a novel hybrid surface-
volume representation based on a 3D mesh that is encoded and
controlled by a morphable face model (3DMM). The morphable
face model can be tracked across temporal frames with dynamic
pose and expression changes through a traditional optimization
process [BV99, GMFB∗18], but it can only accumulate radiance
on the mesh surface and hence cannot model volumetric effects
such as hair and sub-surface scattering in the skin, limiting the
photorealism. We use a shelling process to lift the 2D surface of
the morphable model into a 3D volume with embedded appearance
(radiance) field. The resulting shell volume is conveniently param-
eterized by extending the 2D UV parameterization of the mesh to
3D UVD by including a shell index or depth.

As in traditional facial capture pipelines, at modeling (training)
time, we align and track our face model over subsequent video
frames and use the registered model to photorealistically encode
the appearance of each expression in the UVD space. At inference
time, by adjusting gaze and expression coefficients of the model,
we can explicitly control and render the periocular region for novel
expressions and viewpoints.

We complete the full scene model by combining our novel model
for the periocular region with an eyeball model from EyeNeRF
[LMM∗22]. This parametric eyeball model consists of two spheres
smoothly blended into each other as defined by the cornea radius,
eyeball radius, and the blending angle. More details of the eyeball
model can be found in [LMM∗22]. Note that their periocular model
consists of a Nerfies-style deformable volume and hence cannot
explicitly control expressions. For the parameteric face model, we
employ a linear 3DMM similar to [BV99], using 157 expression
blendshapes [Pol23]. Next, we detail the key components of our
novel hybrid representation shown in the schematic overview in
Fig. 2.

4.1. Shelling

We introduce a shelling procedure, which constructs a volumet-
ric cage around the original surface of the morphable face model
mesh by extruding the vertices by a preset amount along the vertex
normal, both inwards and outwards. This step is repeated multiple
times to create a number of shell layers, leading to a concentric
onion-like structure. This construction allows all the shell layers
to have a common surface topology. By connecting corresponding

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



4 of 14 Gengyan Li et al. / ShellNeRF

Figure 2: Method overview: our hybrid model (a) is first posed
by applying the 3DMM expression coefficients (b), Sec. 4. The
resulting face shape (c) is extruded into a layered volume (d)
via a "shelling" procedure, Sec. 4.1. The shells map sampled
ray points from the XYZ world space (e) into a new UVD shell
space (f), Sec. 4.2. The UVD points are then displaced by a warp
field (g), which is conditioned on the local geometry deforma-
tion (h), Sec. 4.4. Lastly, the warped UVD points are used to query
the canonical NeRF (i) for rendering, Sec. 4.6.

vertices across subsequent layers, each triangle in the original mesh
is lifted into a stack of volumetric wedges, Fig. 3. Each wedge de-
limits a volumetric cell within the UVD shell space. We show that
using a stack of such shell layers allows for better modeling of our
deformable scene by compensating for inaccuracies and limitations
of morphable model tracking by accumulating volumetric features
that encode i) a 3D radiance field and ii) a small additional defor-
mation field. These encoded fields help model the complex motion,
intricate geometry and appearance of hair and skin.

We observe in our experiments that more outwards shells are
needed than inwards shells to model volumetric effects like hair
and eyelashes. The outermost shells is extruded 12mm from the
3DMM mesh and the innermost is intruded by 1mm. The rest of the
layers are equidistantly placed along this range. We show ablations
with different number of shell layers (2, 6, 12 and 20), we notice
no improvements for more than 20 shells and hence use it as the
default setting.

4.2. Shell mapping and sampling

We now describe the mapping from the world space (XYZ) to our
shell space (UVD) defined in the previous section. As in the origi-
nal NeRF, each pixel is rendered by sampling 3D points along the
camera ray in XYZ world space. But instead of sampling between
a near and far plane, our sample points are defined by the inter-
sections of the camera ray with the multiple wedges in our shell
model. For each ray, we first compute the intersection with all trian-
gles within the scene, including shell triangles and wedge walls in
Fig. 3(a). Given the known UV parameterization and depth index D
of each wedge vertex, the UVD location of each intersection point
is computed through linear (barycentric) interpolation, Fig. 3(b). As
barycentric interpolation is continuous across neighboring triangle
boundaries, we obtain a continuous UVD mapping across wedges.
For proper positional encoding, this mapping is composed with a
global scaling and translation of the UV subspace from [0,1] onto
[−π,π]; the same scaling is applied on the depth axis.

Figure 3: (a) For each ray, we compute all intersections with all
wedges, and find a successor within the same wedge. (b) The UVD
coordinates of intersections on the wedge surfaces (red and green
stars) are computed using barycentric interpolation. The UVD lo-
cations of samples within the wedge (blue dots) can be approxi-
mated by linearly interpolating the surface samples.

4.2.1. Subsampling intervals and rendering

The ray-wedge intersections provide a sparse number of sample
points. They are also an unequal count over different rays, which
prohibits fixed-size batch processing, leading to wasted compute
performance. We solve this problem by further densifiying the sam-
ples by adding "spare" sample points along the rays to make up a
fixed count across all rays. We empirically find that a total of 380
sample points (including the wedge intersections) are sufficient for
sampling across 20 shells. To place these additional sample points,
we first define the sampling intervals as the ray segments between
the intersections with each wedge. The "spare" points are then al-
located across these intervals proportional to their length. The allo-
cated points are then placed equidistantly within each interval. In
some corner cases (discussed ahead) the sample points may not be
sorted contiguously along the ray, hence a final sorting operation is
performed to ensure the right ordering.

Once all the sample points are defined, the color of a ray r is
rendered as:

Ĉ(r) =
N

∑
i=0

Ti(1− exp(−σiδi))ci, Ti = exp

(
−

i−1

∑
j=1

σ jδ j

)
, (1)

where σi and ci refer to density and radiance samples taken within
UVD space and δi denotes the distance from a sample point to the
next one.

Concave geometry of the face model mesh causes interest-
ing corner cases during the shelling process, such as overlapping
wedges and inverted faces. Overlapping wedges are caused by the
"collision" of either intruded shells (in regions like the eyelids) or
extruded shells (such as on the nose bridge). A naïve approach
would require the definition of a one-to-many mapping, where
a single XYZ world point is included into multiple overlapping
wedges. By relying on ray-wedge intersections to define our sam-
pling intervals directly in UVD space, our formulation allows for a
simple and elegant way to handle the otherwise complex mapping
due to overlapping wedges. We can thus sample from multiple over-
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Figure 4: There are 5 steps in the sampling of ray points within
overlapping wedges (illustrated by their 2D rectangular cross-
sections in blue and orange): (1) compute ray-wedge intersec-
tions; (2) pair-up intersection points into sampling intervals for
each wedge; (3) allocate samples evenly across all intervals, based
on their size; (4) compute the XYZ-distance δ between subsequent
samples within the same interval; (5) gather the samples sorted
based on their distance along the ray. The last sample in each in-
terval is ignored.

lapping wedges without special treatment, as illustrated in Fig. 4.
During rendering, as the number of sample points increases, δi de-
creases and naïvely reusing Eq. (1) leads to decreased opacity in
each of the overlapping wedges, as density is split up between the
volumes (which "share" the integration distance). To avoid this is-
sue, we instead re-define δi as the distance to the next point within
the same wedge, meaning that δi would then remain constant re-
gardless of how many intersection points from other wedges are
in the same space. The ordering of each sample point however re-
mains the same, leading to correct integration of radiance along the
ray. Inverted mesh faces, on the other hand, require special han-
dling. We discuss this in more detail in the next section.

4.3. Wedge Inversion

As we construct the shells by extruding vertices along their nor-
mals, at certain convex locations such as near the eye edges, the
in/extruded shell surfaces may contain inverted faces, resulting in
self overlapping wedges.

For the human face, the actual wedge inversions occurs almost
exclusively in areas where the volume should be transparent (and
therefore would not intrinsically cause issues), as the only areas
where the volume needs to extend above the surface are hairs which
exclusively are seated above convex sections of the face where
mesh inversion cannot occur. Therefore, the primary concern lies
within the fact that our sampling strategy through the use of inter-
polation could produce invalid samples throughout and even out-

(a) (b)

Figure 5: Resolving an inverted wedge: the 2d cross-sections of
3 different wedges are shown in red, green and white. In (a), the
two blue intersections are erroneously paired into an interval and
generate orange samples outside of the wedge, leading to artifacts
near the inverted wedge. In (b), new layers are added (*) and the
blue samples are now in different wedge layers; they are no longer
paired into an interval.

side the wedge (see Fig. 5 (a)), and not just the region where the
wedge self-intersects.

This is mitigated by the fact that we employ multiple layers
within our shells. Although wedge inversion still occurs, each
wedge would only be inverted in one layer, and incorrect inbetween
samples would not be generated outside that layer, effectively iso-
lating the problem to a much smaller region (see Fig. 5 (b)).

4.4. Warp Field

3DMMs can model the coarse motion involved in various facial
expressions but do not have the resolution to model more subtle
details, especially finer structures like the eyelids. While slight mis-
alignments might not be visible to human observers, shifts of even
a few pixels could cause significant degradation of quality as our
model integrates data over multiple frames/expressions. In order to
address these residual errors, we learn a small additional 3D warp
field.

While Nerfies [PSB∗21] employs such as warp field to directy
learn the mapping from the observation space to an implicit canon-
ical space, we instead first map world space 3D points to the shell
space (in UVD coordinates) for each frames using the mapping pre-
viously described in Sec. 4.2. The additonal 3D warp field is used
only to compute a delta from the shell UVD space of each frame to
the final canonical UVD space.

While the warp field in Nerfies is conditioned on a per-frame
learnt latent code, this cannot be generalized to novel unseen ex-
pressions with explicit control. A simple solution to this would be
to instead condition it on the 3DMM expression paramaters for
each frame. However, the expression basis of our 3DMM model
contains 157 dimensions, which may result in overfitting. Further-
more, this strategy would entangle the warp field and the full face
expression whereas the warp should only be a spatially local phe-
nomenon. Hence, we choose to condition the warp field only on
local geometry features (defined ahead in the next section).

s : x → x’ is our mapping from world space to the shell UVD
space, as defined in Sec. 4.2. w : (x’,ω)→ (x”) is the residual warp
field, conditioned on local geometry features ω(x). Each sample
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point is mapped from the given world space location x to the canon-
ical location x” as x” = w(s(x),ω(x)). Note that as mentioned in
Sec. 4.2, although s is not a function as it is a one to many mapping,
each sample point along a camera ray is still mapped to exactly one
resulting canonical location. We use the same parameterization for
our warp field w as used in Nerfies [PSB∗21] – an MLP with posi-
tionally encoded input x’, using annealing and arap regularization,
only with the difference of conditionining on local geometry fea-
tures instead of a learnt latent code. We refer you to their paper for
more schematic details.

4.4.1. Local Geometry Features

We condition the warp field on the local geometry, which changes
with mesh deformation across different expressions. We formulate
these geometry features to be both well defined and continuous
across the mesh. These properties are defined on a per vertex basis
and can then be computed at any point in any wedge using the same
interpolation as used to compute the UVD coordinates.

Let vc be the vertex for which we compute the geometry features,
and v0..N , be the list of neighboring vertices, and let nc be the cor-
responding normals. Let w0..N be a corresponding list of weights,
computed based on the mean of the angles of the two triangles ad-
jacent to that vertex: wi =

αi+αi+1
2 ∑ αk

with k ∈ 0..N. This corresponds
to weights commonly used for computing shading vertex normals,
where neighboring triangles are weighted based on their angles.

Specifically, we compute the following values:

• The area of the faces around the vertex: ac = ∑ ||(vi − vc)×
(vi+1 − vc)||

• The scaled cotangent laplacian of the vertex: 1√
ac

∑wi(vc − vi) ·
nc

• The rotational stretch, estimated using the shifting weights:
∑wi(UVi −UVc)

• The normal of the vertex, in the canonical head pose: nc
• The location of the vertex, in the canonical head pose: vc

The first value roughly corresponds to the local horizontal
stretch, defining how much the triangles have increased or de-
creased in size. The second value estimates the local curvature, us-
ing the cotangent laplacian as a heuristic. The third value measures
the relative change of the weights wi. As the UV location of each
vertex is constant across all frames, the value changes only if the
corresponding angle weights change. Specifically, if the nearby ver-
tices are all rotated towards a certain UV direction, then the weights
increase for vertices closer to the opposite direction, shifting the re-
sulting weighted UV difference in that direction. We normalize the
values by subtracting the values computed from the neutral expres-
sion, and scale the result to have a standard deviation of 1, and
assemble them into a 10-dimensional local geometry feature de-
scriptor to condition our warp field. To avoid outliers, we clip the
values to be strictly with [-2, 2].

We store the range of values of the features for each vertex and
each feature dimension observed during training. During render-
ing of novel expressions, we constrain the evaluated features to lie
within those ranges. This prevents our warp field and the NeRF fea-
tures from extrapolating to unstable values, instead relying purely
on the 3DMM motion for poses which are outside of the convex
hull of the training set.

4.5. Explicit Eye Model Integration

Although our shell formulation allows for control over most of the
face, the 3DMM face model by itself does not contain the eye-
ball and hence is unsuitable for modeling eye motion. We there-
fore add an explicit parametric eyeball model similar to EyeN-
eRF [LMM∗22]. The volume inside the eyeball is modeled sepa-
rately than the canonical UVD volume. During the rendering pro-
cess, we compute ray intersections with the eyeball surface and
split it into a reflected and refracted ray. The refracted ray that
enters into the eyeball through the cornea is marched through an
“inner-eye” volume defined in the world XYZ space. The reflected
ray is marched through the UVD shell space. Instead of using a
separate MLP to model the “inner-eye” volume, it is parameterized
with the same MLP as the shell UVD volume. The range of XYZ
values for the “inner-eye” volume and the UVD values for the shell
space are scaled and an offset is added to ensure that they do not
overlap. This avoids the computational cost of an additional net-
work without any noticeable performance drop.

Splitting the ray at the exact location of the eyeball surface can
lead to artifacts since the eyeball model parameters might not be
accurate and the eyeball surface might intersect with the eyelid,
especially for unseen poses. As a solution, we extend the ray by
2 mm into the eyeball after the intersection. This ensures that the
entire eyelid is always integrated.

We also model and estimate the scene illumination using an envi-
ronment map model parameterized by a lat-long image. This image
is queried at the end of the reflected ray and is optimized to gener-
ate the specularities/glints on the eyeball surface. Unlike EyeNeRF
which required the ground-truth environment map, we estimate this
scene lighting, which is later used for generating accurate specular-
ities on the eyeball while synthesizing novel views and gaze.

4.6. Shading

The combination of shell map and warp field is very flexible and
handles most facial deformations. However, it is incapable of cor-
rectly modeling shading caused by wrinkles that appear and shift
as the face deforms. Similarly, as the face moves, the normals and
specular highlights also shift. We address this issue by decom-
posing the output radiance of our network into view-independent
albedo and diffuse shading and view-dependent specular shading.

Features from the MLP trunk (Fig. 6, green) are branched off
to predict three outputs: a 3 dimensional albedo color, a single di-
mensional diffuse shading factor and a single dimensional specu-
lar shading. The diffuse shading factor is first multiplied with the
albedo, and then the specular shading is added to obtain the final
radiance. Note that we do not claim a physically accurate intrin-
sic decomposition of the radiance field, our primary objective of
performing such a decomposition is to condition the diffuse and
specular shading components with the local geometry features, so
that they can model the high-frequency shading effects caused by
wrinkles and folds. Our ablation studies clearly show the effective-
ness of this disentangled representation in achieving more accurate
and photorealistic synthesis.

© 2024 The Authors.
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Figure 6: Architecture of the proposed canonical NeRF network,
which is an MLP that takes the positionally encoded canonical
UVD-space point x”, local geometry features, and the view direc-
tion as inputs. The model outputs a density σ, a diffuse shading
factor that is multiplied with the pseudo albedo and finally added
to a specular shading to yield the final color c.

Figure 7: The capture setup includes 11 training cameras (yellow
circles) and 3 test cameras (red circles). The subject’s head is po-
sitioned at the central gray sphere.

5. Model Training

In this section we describe how we train our model, the losses and
regularization terms, and the training data.

5.1. Data Capture

To demonstrate our method, we capture 5 subjects in a calibrated
multi-view camera rig consisting of 14 cameras distributed quasi-
uniformly in the frontal hemisphere as shown in Figure 7. The cap-
ture sequence consists of a series of momentary videos of the sub-
jects making 30 different expressions. Of the 14 camera views, 11
are used for training, while 3 of the frontal cameras are used for
evaluation. We use only 1-3 frames of each captured expression for
training our model.

We also capture each subject looking at the 10 frontal cameras
while making 4 different expressions (neutral, brows up, smiling,
squinting) while keeping their head pose still. Since the camera po-
sitions are known through the camera calibration process, captur-
ing this “gaze-target” sequence provides frames with ground-truth
3D gaze direction, which helps to achieve explicit control of the

synthesized gaze direction during rendering. The frames where the
subject is looking at the evaluation cameras are also held out in or-
der to evaluate regazing quality. Note that the subject can only look
at 10 cameras and not all 14 cameras because 4 cameras are located
beyond the peripheral vision of a frontal gaze, so the subject cannot
look at them without turning their head.

Finally, we eliminate any frames with noticeable motion blur
through a quick manual inspection. This results in 120 - 150 total
training frames per subject. Each image initially has a resolution of
4096× 6144, containing the entire face. We focus on the eye and
periocular region and crop the image to a 1500×1500 pixel region
around the left eye. As the shell-volume is constrained to the close
proximity of the face, our method is incapable of reconstructing the
background. We segment out the background in the training frame
using an off-the-shelf face segmentation method [PEL∗21].

5.2. Network Training

We use mean-squared error in sRGB space as the primary training
loss. For a given ray r, we compute the mean-squared error between
the color of the target pixel Csrgb and the output of our network
Ĉsrgb(r).

lim = ||Csrgb − Ĉsrgb(r)||22 . (2)

5.3. Geometry Training

Both the 3DMM shell and warp field serve the same purpose and
map correspondences across frames. They are inherently inter-
changeable, and therefore ambiguous. We resolve this ambiguity
by staggering our training into two phases. i) In the first phase, we
train our model without the warp field. Our 3DMM parameters are
initialized using a traditional model fitting process consisting of
minimization of sparse facial landmark reprojection error across
multi-view images. These 3DMM parameters are further jointly
optimized while training the canonical NeRF network with our pri-
mary photometric loss, Eq. 2. This achieves 3DMM parameters that
best represent the coarse to mid-level deformation. We also reset
the NeRF volume 4 times (every 50k iterations) to improve the final
geometry accuracy, in particular that of the eyeball model. Inspired
by [LMM∗22], we also learn a per-vertex offset for the eyeball
model δi, which we regularize using a small l2 loss loff = ∑

Nv
i=0 δ

2
i .

To prevent the drift of the 3DMM geometry during the joint op-
timization, we compute the average drift as the difference of the
initial and optimized 3DMM parameters and apply them as bias
for re-animation. ii) In the second phase, we freeze the 3DMM pa-
rameters and continue training the canonical NeRF network, this
time also learning the warp field. This addresses the residual defor-
mations that require the more flexible local warp field. During this
phase we train for 300k iterations.

5.4. Environment Map

We learn an approximate environment map to construct high qual-
ity corneal reflections. We define the environment map as a 256×
128 latlong image Ienv, which is sampled bilinearly for each reflec-
tion query. The environment map is trained together with the other

© 2024 The Authors.
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networks using lim (Eq. 2). We further impose a small l1 regular-
ization on the environment map in order to encourage sparsity and
mitigate noise: lenv = ||Ienv||1

5.5. Eyelid Opacity Regularization

Eyelid and eyeball motion are strongly correlated to gaze, i.e. the
upper eyelid is automatically being lowered when looking down.
This introduces an ambiguity. The appearance of the eyelid can be
on the eyeball or the eyelid. This is not an issue for reconstruct-
ing training frames but artifacts may occur when rendering novel
expressions, especially for eyeball motion or blinking. In order to
resolve this ambiguity, we leverage the fact that certain training
frames include entirely closed eyelids. For these frames, the ap-
pearance should remain the same for every eyeball pose or color.
Instead of querying the volume inside the eyeball for the refracted
ray, we replace the eyeball volume with randomly chosen colors
during training. This encourages the rest of the volume outside
the eyeball to become more opaque and hide the incorrect eyeball
color.

5.6. Additional Regularizers and Total Loss

In order to improve overall quality and reduce floaters, we use the
distortion loss from MipNeRF360 [BMV∗22], which penalizes non
sparse volumes. In order to achieve spatial consistency, the warp
field is regularized using the ARAP loss used in Nerfies [PSB∗21].
We refer the reader to the respective papers for more details.

This results in the total loss:

ltot = λimlim +λoffloff +λenvlenv +λdistortldistort +λaraplarap,

with the empirically chosen weights λim = 1, λoff = 1e-6, λenv =
1e-7, λdistort = 1, λarap = 0.1. We train our models using the Adam
[KB14] optimizer with an initial learning rate of 5-e4, exponen-
tially decayed by a factor of 0.1 every 250k iterations.

5.7. Split training

Training our model with multi-frame data with several expressions
inherently leads to blurred results, when compared with training a
NeRF on a single frame. This is consistent with most other prior
works such as Nerfies [PSB∗21], MonoAvatar [BTH∗23] or Ner-
FACE [GTZN21]. This is however not a binary effect; as can be
seen in Fig. 8, the more frames that are trained on, the blurrier the
end result becomes.

We speculate that this is due to the warp field not being able
to accurately model complex sub-pixel deformations experience
by the skin, and that this mismatch results in blur as the network
attempts to aggregate the data across frames. Furthermore, when
training on fewer frames, finding correspondences also becomes
easier and likely improves the warp field quality. But when train-
ing on only a few frames, we lose generalizability leading to very
noticeable artifacts when rendering novel expressions.

In order to retain details without losing generalizability, we dis-
tribute training samples such that 2⁄3 of them are distributed across 6
key expressions (tightly closed eyes, closed eyes, neutral, looking

(a) GT (b) 1 (c) 5

(d) 40 (e) 144 (f) Split 6/144

(g) Unseen Expression (h) 40 (i) Split 6/144

Figure 8: Results of the same frame rendered after training the
network on an increasing number of frames. The first 2 rows show
the ground truth training expression followed by synthesized result
with different number of frames used in training. The last row show
the same for another training expression. The more frames used for
training, the blurrier the result. However, training with fewer than
144 frames results in artifacts when rendering novel expressions.

left and right, snarl), while the rest are distributed evenly across all
expressions. The latter ensures that the warp field does not devi-
ate too much from any given expression, while the former training
samples allow the unwarped canonical volume to be trained primar-
ily on only a few frames, resulting in a less blurry volume overall.

6. Results and Evaluation

In this section, we demonstrate the ability to independently control
the gaze (Fig. 9), viewpoint (Fig. 10), and eye expressions of a cap-
tured subject (Fig. 11, 12, and 13). We train our model on 5 differ-
ent subjects with diverse appearances, and evaluate it on multiple
different settings. As described in Sec. 5.1, we capture 4 sequences
of the subject looking at each camera with various expressions. To
enable evaluations, we hold out parts of the data during training
as detailed below. In addition, we capture two test sequences, each
consisting of the subject making a variety of expressions for 10
seconds. The second sequence also contains head motion, with the
subject rotating their head around.

6.1. State-of-the-Art Comparisons

We compare our method with several state-of-the-art methods –
NerFACE [GTZN21], Mixture of Volumetric Primitives (MVP)

© 2024 The Authors.
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Table 1: Results from our quantitative baseline comparison. The colors indicate best, second best, and third best.

Regazing Test View Test Expression Gaze+Expression
SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

MonoAvatar 0.7633 0.4673 0.6940 0.5110 0.7511 0.4665 0.7558 0.4691
Nerface+Eye 0.70854 0.4989 0.6778 0.4963 0.7006 0.5093 0.7012 0.5018
EyeNeRF+ 0.6911 0.4871 0.6930 0.4831 0.6851 0.4969 0.6912 0.4865

Nerface+EyeNeRF 0.6932 0.4868 0.6953 0.4811 0.6840 0.4896 0.6933 0.4855
MVP 0.7816 0.3705 0.7179 0.4324 0.7381 0.4090 0.7509 0.3865

ShellNeRF 0.7516 0.3924 0.7124 0.4358 0.7206 0.4198 0.7390 0.3941

Table 2: Results from our user study. We show the preference of users for each method and task.

Regazing Realism Regazing Accuracy Reenactment Accuracy Expression Realism Novel View Realism
MonoAvatar 4.9 % 9.3 % 2.2 % 4.9 % 0.0 %

MVP 1.3 % 8.0 % 15.6 % 12.0 % 11.1 %
ShellNeRF 93.8 % 82.7 % 82.2 % 83.1 % 88.9 %

Figure 9: Comparisons for regazing. Related works produce
ghostly artifacts on the pupil. Even the best performing related
work, MonoAvatar, struggles with the highly nonlinear deforma-
tions on the upper eyelid while ours consistently generates high-
quality renderings.

Figure 10: Comparisons for novel view synthesis. Related works
fail to synthesize details like specular reflections on the eye sur-
face. Our approach maintains high fidelity and renders reflections
of individual lights on the eyeball.

© 2024 The Authors.
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Figure 11: Reenactment is a highly challenging task because the
model has to synthesize expressions that were not seen during train-
ing. Note how the baselines syntheize images where the underlying
expression seems perceivably different than the ground-truth. Our
hybrid approach is more robust to out-of-distribution expressions
and renders convincing novel expressions.

[LSS∗21], and MonoAvatar [BTH∗23]. Furthermore, although
EyeNeRF [LMM∗22] is not directly animatable, we train a mod-
ified version of it in which the latent code is replaced with the
3DMM parameters, with an additional latent slack, similar to the
conditioning used for the dynamic neural radiance field in Ner-
FACE. Therefore, we use our own implementation of NerFACE
and EyeNeRF, and additionally compare our method to a NerFACE
conditioned warp field, as well as a full combination of NerFACE
and Nerfies, using both a conditional warp and radiance field. Given
their similarity, we further include the EyeNeRF eye model in the
NerFACE evaluation for a more fair evaluation. To ensure a fair
comparison, we also use our 3DMM model in the implementation
of all SotA methods (where applicable). We note that MonoAvatar
and MVP compare well with our method over many image quality
metrics (see Table 1). While quantitatively our method does not ob-
viously stand out, we encourage the reader to see the supplemen-
tary video results for the full qualitative evaluation. Our method
achieves more accurate animation and view-synthesis, whereas all
other methods struggle with gaze and expression changes and pro-
duce significant floaters for novel camera viewpoints. This seems

Figure 12: Gazed reenactment. Our proposed approach disentan-
gles eye gaze from expressions, which allows rendering the same
expression with different gaze directions.

Figure 13: We demonstrate the ability of our method to indepen-
dently control and synthesize test gaze, expression and viewpoint
from our captured dataset that were heldout during training. We
outperform the SotA methods in all dimensions.

© 2024 The Authors.
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to indicate that image quality metrics do not capture the effects of
spatio-temporal volumetric artifacts and may not be best suited for
evaluation of such methods.

6.2. Evaluation settings

6.2.1. Novel View Synthesis

We demonstrate view consistency by showing novel view synthesis
(see Fig. 10). During training, we hold out the 3 frontal clustered
cameras, and use them as an evaluation set. Although the specular
highlights shift and are slightly incorrect, we maintain the over-
all appearance, and maintain proper geometry. We are also able to
synthesize approximate eyelashes from novel views, while SotA
methods fail to generate the right wrinkles and frown lines.

6.2.2. Regazing

To evaluate regazing capabilities, during training, we hold out all
images of the subject looking at one of the cameras as a test gaze.
Similar to EyeNeRF [LMM∗22], we can perform regazing by di-
rectly manipulating the eyeball pose. We demonstrate the ability to
control the eyeball and achieve the desired gaze given the 3D gaze
direction (computed from the known gaze target). While EyeNeRF
can control the periocular region only by interpolating known gaze
frames we achieve greater expression control by applying 3DMM
parameters manually or from a known fit. In Fig. 9, we demonstrate
generalization to new gaze targets using the corresponding 3DMM
fits. Note that our method correctly disentangles periocular expres-
sion and eyeball pose and hence can synthesize an unseen gaze di-
rection, whereas MonoAvatar [BTH∗23] struggles to disentangle
the two and tries to fall back to the nearest training expressions.
NerFACE [GTZN21] and Nerfies [PSB∗21] fail to synthesize the
unseen eyeball poses.

6.2.3. Reenactment

We demonstrate the ability to reenact previously unseen expres-
sions using held out test sequences consisting of the subject making
various expressions for 10 seconds. Although the face pose may be
slightly mismatched due to minor inaccuracies in 3DMM fits for
the test sequence, we are still fully capable of reenacting a variety
of expressions (see Fig. 11) and generating perceptually accurate
wrinkles and eyelid positions. We also hold out the sequence of
the subject looking at each camera while smiling during training.
Using this data, we verify that our method can perform ’gazed-
reenactment’ – correctly model unseen expressions with unseen
gaze directions as shown in Fig. 12.

6.3. User study

As both MonoAvatar and MVP compare well with our method over
many image quality metrics, we further conducted a user study to
evaluate these three methods. We asked 45 participants to choose
which method performs best in terms of five tasks: regazing real-
ism, regazing accuracy, reenactment accuracy, expression realism
and novel view realism. As shown in Table 2, the vast majority of
participants prefer our method over MonoAvatar and MVP across
all categories.

(a) GT (b) Ours

(c) No Warp (d) No Shading (e) Neither

Figure 14: Ablation of the warp field. We train a version of the
method without the warp field or shading decomposition condi-
tioned on local geometry features described in Sec. 4.4 and Sec 4.6.
We show comparisons on strongly deformed held out expressions.
Note that only with both warp field and shading decomposition are
all features preserved.

To evaluate realism of regazing, expression and novel view syn-
thesis, we showed each participant the results of the three methods
side-by-side. Each result is a short video segment that transitions
and interpolates through various (training) gazes, expressions and
camera angles. We asked each participant to choose which of the
three results is the most realistic. Please refer to the supplemen-
tary materials for examples, labelled as "Regazing", "Interpolating
Expressions" and "Novel View Synthesis", respectively.

For regazing and reenactment accuracy, we showed each user a
target novel gaze image or novel expression video as well as corre-
sponding reconstructions of each subject, using each method. We
then asked them to choose which method most accurately recon-
structs that gaze direction. Examples are illustrated in Fig. 9 and in
the supplementary materials.

6.4. Ablations

We perform ablations on our various design choices and settings to
demonstrate their contribution to the method, see Table 3.

6.4.1. Warp Field and Shading

As warp field and shading are inherently ambiguous and are ca-
pable of partially compensating for each other, we evaluate them
jointly. As described in Sec. 4.4, we model residual deformations
like finer wrinkles using a warp field conditioned on local geome-
try features of the 3DMM mesh. We train a version of our method
for a given subject without this warp field, see Fig. 14. This results
in blurrier images. Without the shading decomposition, we are still
able to partially reproduce shadows through use of the warp field,
but this results in significant artifacts as the network attempts to
use the warp field to change shading. When the warp field is also
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Table 3: Results from our quantitative ablation.

Regazing Test View Test Expression Gaze+Expression
SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

No Warp 0.7561 0.4140 0.6997 0.4610 0.7304 0.4361 0.7450 0.4148
No Shading 0.7516 0.4098 0.6919 0.4678 0.7286 0.4351 0.7406 0.4132

No Warp or Shading 0.7547 0.4192 0.5391 0.5262 0.7328 0.4419 0.7472 0.4223
No Eyelid Regularization 0.7519 0.3939 0.7081 0.4386 0.7226 0.4212 0.7401 0.3961

No Split Training 0.6731 0.4803 0.7248 0.4347 0.7368 0.4362 0.7475 0.4185
No Geometry Optimization 0.6896 0.4594 0.6803 0.4638 0.7227 0.4437 0.7330 0.4256

2 Shell Layers 0.7477 0.4224 0.6893 0.4677 0.7223 0.4432 0.7361 0.4245
6 Shell Layers 0.7129 0.4358 0.6539 0.4767 0.6962 0.4510 0.6998 0.4418
12 Shell Layers 0.7523 0.3980 0.7075 0.4417 0.7230 0.4243 0.7395 0.3999

20mm Outer Shell 0.7532 0.4030 0.7040 0.4508 0.7249 0.4287 0.7423 0.4049
6mm Outer Shell 0.7481 0.3863 0.7114 0.4306 0.7216 0.4135 0.7352 0.3886
3mm Inner Shell 0.7495 0.4087 0.6974 0.4581 0.7249 0.4319 0.7370 0.4115

ShellNeRF 0.7516 0.3924 0.7124 0.4358 0.7206 0.4198 0.7390 0.3941

(a) GT (b) No Regularizer (c) Ours

Figure 15: Without the eyelid regularizer which ensure solidity of
the eyelid and nearby region, the network is allowed to produce
partially transparent skin which become visible at novel views, re-
vealing the EyeNeRF eye model underneath.

removed, the network is unable to adapt, it is unable to model wrin-
kles and the overall quality suffers dramatically.

6.4.2. Eyelid Regularization

Without the eyelid regularizer, certain areas of the face remain
transparent, allowing the eyeball model boundary to be visible. Our
eyelid regularizer prevents this from happening by encouraging the
network to make the eyeball completely invisible when the eyelid
is closed. See Fig. 15

6.4.3. Shell Layering

For our final model, we use a total of 20 shell layers, resulting in
19 stacks of wedges. We also test our model with 2, 6, and 12 shell
layers. As can be seen in Fig. 16, both with 2 and 6 layers, artifacts
are clearly noticeable. Between 12 and 20 layers, we notice barely
noticeable improvement. Since the drop in compute efficiency is
not significant, we have opted for 20 layers as the default for gen-
erating our other results.

6.4.4. Shell Extrusion

In our default model, the outermost shell is extruded 12 mm out-
wards, and innermost 1 mm inwards. We perform an ablation by

(a) GT (b) Ours (c) 12 layers

(d) 6 layers (e) 2 layers

Figure 16: As described in Section 4.3, an insufficient number of
layers leads to visible artifacts, as can be seen in the images show-
ing our method trained using 2 and 6 layers.

changing this range to 6 mm outwards and 20 mm outwards, as
well as by 3 mm inwards. As can be see in Fig. 17, extruding the
model further outwards effects slightly blurrier results, while 6 mm
appears to just barely clip the eyelashes of certain subjects. We
therefore chose 12mm as a conservative threshold. Extruding the
shell by 3mm inwards on the other hand results in significant arti-
facts on certain expressions. This is likely due to the fact that the
eyelids, which are very thin structures, would have their inner shells
extended past the other side of the lid, resulting in strong inversions
in a significant part of the face. As mentioned in Sec. 4.3, although
layering localizes the effects of inversions which otherwise primar-
ily occur above the face and outside of solid geometry, it does not
solve it near the actual inversion location, which in this case is on
top of or within the solid eyelid.

© 2024 The Authors.
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(a) GT (b) Ours

(c) 20mm outer (d) 6mm outer (e) 3mm inner

Figure 17: We show an ablation with extruding our shell inwards
and outwards at different distances. When extruding only 6mm, cer-
tain subjects’ lashes extend beyond the shell and are clipped. 20mm
makes the image marginally blurrier for no further benefits. When
extruding 3mm inwards, artifacts appear near the eyelids.

(a) GT (b) No Geom. Optim. (c) Ours

Figure 18: We show an ablation showing the necessity of differ-
entiable geometry. When attempting to render a novel expression,
using the initial 3DMM fit results in significant artifacts near the
eye.

6.4.5. No Geometry Optimization

We also ablate our method by dropping the joint optimization of the
3DMM model parameters during the first phase of training, see Fig.
18. We note that this joint optimization is crucial to capture smaller
geometry details that are usually not captured by traditional 3DMM
fitting such as position of eyelids.

7. Discussion & Limitations

While our method achieves state-of-the-art quality in synthesis of
the periocular face region, we note that the joint optimization of
the 3DMM parameters during training may theoretically introduce
biases due to the inherent shape-radiance ambiguity. Such biases
may be exaggerated due to accumulation of features across multi-
ple frames/expressions and could cause issues during reenactment
if the optimized 3DMM geometry differs significantly from the
ground-truth geometry. In practice, we do not notice any significant
bias, possibly due to good initialization of the 3DMM parameters.

We also note that although the eyeball model improves the qual-

ity of the eye and allows for explicit control of the gaze, this poses
an additional requirement for reenactment that the exact 3D gaze
must be known and is not directly predicted, as done by some other
methods [CSK∗22, SWW∗20].

8. Conclusion

We introduce ShellNeRF, a novel hybrid method that combines ex-
plicit face and eyeball models with a canonical neural volumet-
ric representation to provide a holistic pipeline for animation and
synthesis of the eye and periocular region. We demonstrate signif-
icant improvements in the quality of synthesized details over state-
of-the-art approaches for various applications like expression re-
enactment, novel view synthesis, and regazing which are crucial
for enabling the next generation human 3D telepresence.
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